Asymptotically regular mappings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2006), pp. 17-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_11_a2,
     author = {N. A. Erzakova},
     title = {Asymptotically regular mappings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--21},
     publisher = {mathdoc},
     number = {11},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_11_a2/}
}
TY  - JOUR
AU  - N. A. Erzakova
TI  - Asymptotically regular mappings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 17
EP  - 21
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_11_a2/
LA  - ru
ID  - IVM_2006_11_a2
ER  - 
%0 Journal Article
%A N. A. Erzakova
%T Asymptotically regular mappings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 17-21
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_11_a2/
%G ru
%F IVM_2006_11_a2
N. A. Erzakova. Asymptotically regular mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2006), pp. 17-21. http://geodesic.mathdoc.fr/item/IVM_2006_11_a2/

[1] Kakutani S., “A generalization of Brouwer's fixed point theorem”, Duke Math. J., 1941, no. 8, 457–459 | DOI | MR

[2] Browder F. E., Petryshyn W. V., “The solution by iteration of nonlinear functional equations in Banach spaces”, Bull. Amer. Math. Soc., 1966, no. 72, 571–576 | DOI | MR

[3] Erzakova N. A., “O nekotorykh otobrazheniyakh nelineinogo analiza”, Sovremen. metody teorii kraevykh zadach, Voronezh, 2004, 82–83

[4] Erzakova N. A., “O retraktsii i drugikh otobrazheniyakh svyazannykh s nei”, Geometrich. analiz i ego prilozh., Volgograd, 2004, 50–52

[5] Appell J., Erzakova N. A., Santana S. F., Väth M., “On some Banach space constants arising in nonlinear fixed point and eigenvalue theory”, Fixed Point Theory and Applications, 2004, no. 4, 317–336 | DOI | MR | Zbl

[6] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer, Berlin, 1977, 190 pp. | MR

[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp. | MR