Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_10_a5, author = {V. P. Orlov}, title = {The motion of a viscoelastic medium with a free boundary}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {44--50}, publisher = {mathdoc}, number = {10}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_10_a5/} }
V. P. Orlov. The motion of a viscoelastic medium with a free boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2006), pp. 44-50. http://geodesic.mathdoc.fr/item/IVM_2006_10_a5/
[1] Orlov V. P., Sobolevskii P. E., “Issledovanie matematicheskikh modelei mnogomernykh vyazkouprugosti”, DAN USSR. Ser. A, 1989, no. 10, 31–35 | MR | Zbl
[2] Orlov V. P., “Ob ustoichivosti nulevogo resheniya matematicheskoi modeli vyazkouprugoi zhidkosti”, Izv. vuzov. Matematika, 1995, no. 3, 82–84 | MR | Zbl
[3] Solonnikov V. A., “Razreshimost zadachi o dvizhenii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu”, Dinamika sploshnoi sredy, no. 23, Novosibirsk, 1975, 182–197
[4] Orlov V. P., Sobolevskii P. E., “On the mathematical model of viscoelasticity with a memory”, Diff. and Integral Equat., 4:1 (1991), 89–101 | MR | Zbl
[5] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh nachalno-granichnykh zadach dlya uravnenii dvizheniya vyazkouprugoi zhidkosti”, Dokl. RAN, 380:3 (2001), 308–311 | MR | Zbl
[6] Dmitrienko V. T., Zvyagin V. G., “Topological degree method in the equations of Navier-Stokes type”, Abstr. and. Appl. Anal., 1–2 (1997), 1–45 | DOI | MR | Zbl