On the nonwandering set and center of some skew products of mappings of the interval
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2006), pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_10_a2,
     author = {L. S. Efremova},
     title = {On the nonwandering set and center of some skew products of mappings of the interval},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--28},
     publisher = {mathdoc},
     number = {10},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_10_a2/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - On the nonwandering set and center of some skew products of mappings of the interval
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 19
EP  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_10_a2/
LA  - ru
ID  - IVM_2006_10_a2
ER  - 
%0 Journal Article
%A L. S. Efremova
%T On the nonwandering set and center of some skew products of mappings of the interval
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 19-28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_10_a2/
%G ru
%F IVM_2006_10_a2
L. S. Efremova. On the nonwandering set and center of some skew products of mappings of the interval. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2006), pp. 19-28. http://geodesic.mathdoc.fr/item/IVM_2006_10_a2/

[1] Anosov D. V., “Ob additivnom funktsionalno gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1259–1274 | MR | Zbl

[2] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. Mosk. matem. o-va, 44, 1982, 150–212 | MR

[3] Beck C., “Chaotic cascade model for turbulent velocity distribution”, Phys. Rev., E49 (1994), 3641–3652 | MR

[4] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamich. sistemy i nelineinye yavleniya, In-t matem. AN Ukrainy, Kiev, 1990, 15–25 | MR

[5] Efremova L. S., “O ponyatii $\Omega$-funktsii kosogo proizvedeniya otobrazhenii intervala”, T. 6. Dinamicheskie sistemy, Tr. mezhdunar. konf., posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina (Moskva, 31 avgusta–6 sentyabrya 1998 g.), Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozh. Tematich. obzory, 67, VINITI, M., 1999, 129–160 | MR

[6] Efremova L. S., “New set-valued functions in the theory of skew products of interval maps”, Nonlinear Anal., 47 (2001), 5297–5308 | DOI | MR | Zbl

[7] Sharkovskii A. N., “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurn., 17:3 (1965), 104–111 | MR

[8] Nitecky Z., “Maps of the interval with closed periodic set”, Proc. Amer. Math. Soc., 85:3 (1982), 451–456 | DOI | MR

[9] Sharkovskii O. M., “Neblukayuchi tochki ta tsentr neperervnogo vidobrazhennya pryamoi v sebe”, Dopov. AN URSR, 7 (1964), 865–868

[10] Fedorenko V. V., Sharkovskii A. N., “Nepreryvnye otobrazheniya intervala s zamknutym mnozhestvom periodicheskikh tochek”, Issledov. differents. i differentsialno-raznostnykh uravnenii, In-t matem. AN Ukrainy, Kiev, 1980, 137–145 | MR

[11] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR

[12] Coven E. M., Nitecki Z., “Nonwandering sets of the powers of maps of the interval”, Ergod. Theory and Dynam. Syst., 1 (1981), 9–31 | MR | Zbl

[13] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949, 550 pp.

[14] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Tr. V mezhdunar. konf. po nelineinym kolebaniyam, T. 2. Kachestvennye metody, In-t matem. AN Ukrainy, Kiev, 1970, 39–45