Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_10_a1, author = {V. V. Aseev and O. A. Lazareva}, title = {On the continuity of the reduced modulus and the transfinite diameter}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--18}, publisher = {mathdoc}, number = {10}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/} }
TY - JOUR AU - V. V. Aseev AU - O. A. Lazareva TI - On the continuity of the reduced modulus and the transfinite diameter JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 10 EP - 18 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/ LA - ru ID - IVM_2006_10_a1 ER -
V. V. Aseev; O. A. Lazareva. On the continuity of the reduced modulus and the transfinite diameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2006), pp. 10-18. http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/
[1] Aseev V. V., “Nepreryvnost konformnoi emkosti dlya kondensatorov s ravnomerno sovershennymi plastinami”, Sib. matem. zhurn., 40:2 (1999), 243–253 | MR | Zbl
[2] Pommerenke Ch., “Uniformly perfect sets and the Poincare metric”, Arch. Math., 32 (1979), 192–199 | DOI | MR | Zbl
[3] Aseev V. V., Lazareva O. A., “O nepreryvnosti privedennogo modulya i transfinitnogo diametra”, Kazansk. matem. ob-vo. “Algebra i analiz–2004”, Materialy mezhdunarod. nauch. konf., Tr. Matem. tsentra im. N. I. Lobachevskogo, 23, Izd-vo Kazansk. matem. o-va, Kazan, 2004, 80–81
[4] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983, 152 pp. | MR
[5] Vuorinen M., “Conformal geometry and quasiregular mappings”, Lect. Notes in Math., 1319, Springer-Verlag, Berlin e.o., 1988, I–XX ; 1–209 | MR | Zbl
[6] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986, 304 pp. | MR
[7] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR
[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[9] Aseev V. V., Sychev A. V., “O mnozhestvakh, ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. matem. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl
[10] Yang Sh., “Monotone functions and extremal functions for condensers in $\overline{R^n}$”, Ann. Acad. Sci. Fenn., Ser. A1, 16 (1991), 95–112 | MR | Zbl
[11] Jarvi P., Vuorinen M., “Uniformly perfect sets and quasiregular mappings”, J. London Math. Soc., Part 3, 54:174 (1996), 515–529 | MR
[12] Aseev V. V., “Popravka k state: Deformatsiya plastin malykh kondensatorov i problema P. P. Belinskogo”, Sib. matem. zhurn., 44:1 (2003), 232–235 | MR | Zbl
[13] Caraman P., “Relations between $p$-capacity and $p$-module, II”, Rev. Roumaine Math. Pures Appl., 39:6 (1994), 555–577 | MR
[14] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp. | MR
[15] Mazya V. G., “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestn. LGU, Vyp. 3, 1970, no. 13, 42–55
[16] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl
[17] Teichmüller O., “Untersuchungen über konforme und quasikonforme Abbildungen”, Deutsche Math., 3 (1938), 621–678
[18] Mityuk I. P., “Privedenii modul u vipadku prostoru”, DAN URSR, 5 (1964), 563–566
[19] Mityuk I. P., “Pro kvazikonformni vidobrazhennya v prostori”, Dopovidi AN URSR, 1964, no. 8, 1022–1025 | Zbl
[20] Mityuk I. P., “Obobschennyi privedennyi modul i nekotorye ego svoistva”, Izv. vuzov. Matematika, 1964, no. 2, 110–119 | Zbl
[21] Levitskii B. E., Mityuk I. P., ““Uzkie” teoremy o prostranstvennykh modulyakh”, DAN SSSR, 248:4 (1979), 780–783 | MR
[22] Levitskii B. E., “Privedennyi $p$-modul i vnutrennii $p$-garmonicheskii radius”, DAN SSSR, 316:4 (1991), 812–815 | MR
[23] Miklyukov V. M., “O nekotorykh granichnykh zadachakh teorii konformnykh otobrazhenii”, Sib. matem. zhurn., 18:5 (1977), 1111–1124 | MR | Zbl
[24] Dubinin V. N., “Privedennye moduli otkrytykh mnozhestv v teorii analiticheskikh funktsii”, Dokl. RAN, 363:6 (1998), 731–734 | MR | Zbl
[25] Dubinin V. N., Eirikh N. V., “Obobschennyi privedennyi modul”, Dalnevost. matem. zhurn., 3:2 (2002), 147–162 | MR
[26] Kovalev L. V., “Monotonnost obobschennogo privedennogo modulya”, Zap. nauch. semin. POMI, 276, 2001, 219–236 | MR | Zbl
[27] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl
[28] Dubinin V. N., Emkosti kondensatorov v geometricheskoi teorii funktsii, Izd-vo Dalnevostochn. un-ta, Vladivostok, 2003, 116 pp.
[29] Kunzi H. P., Quasikonforme Abbildungen, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1960, 182 pp. | MR
[30] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR
[31] Aksentev L. A., “Vypuklost poverkhnosti konformnogo radiusa i otsenki koeffitsientov otobrazhayuschei funktsii”, Izv. vuzov. Matematika, 2004, no. 4, 8–15 | MR
[32] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR
[33] Bagby T., “The modulus of plane condenser”, J. Math. Mech., 17:4 (1967), 315–329 | MR | Zbl
[34] Tsuji M., Potential theory in modern function theory, Maruzen Co. Ltd., 1959, 590 pp. | MR | Zbl