On the continuity of the reduced modulus and the transfinite diameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2006), pp. 10-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_10_a1,
     author = {V. V. Aseev and O. A. Lazareva},
     title = {On the continuity of the reduced modulus and the transfinite diameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--18},
     publisher = {mathdoc},
     number = {10},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - O. A. Lazareva
TI  - On the continuity of the reduced modulus and the transfinite diameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 10
EP  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/
LA  - ru
ID  - IVM_2006_10_a1
ER  - 
%0 Journal Article
%A V. V. Aseev
%A O. A. Lazareva
%T On the continuity of the reduced modulus and the transfinite diameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 10-18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/
%G ru
%F IVM_2006_10_a1
V. V. Aseev; O. A. Lazareva. On the continuity of the reduced modulus and the transfinite diameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2006), pp. 10-18. http://geodesic.mathdoc.fr/item/IVM_2006_10_a1/

[1] Aseev V. V., “Nepreryvnost konformnoi emkosti dlya kondensatorov s ravnomerno sovershennymi plastinami”, Sib. matem. zhurn., 40:2 (1999), 243–253 | MR | Zbl

[2] Pommerenke Ch., “Uniformly perfect sets and the Poincare metric”, Arch. Math., 32 (1979), 192–199 | DOI | MR | Zbl

[3] Aseev V. V., Lazareva O. A., “O nepreryvnosti privedennogo modulya i transfinitnogo diametra”, Kazansk. matem. ob-vo. “Algebra i analiz–2004”, Materialy mezhdunarod. nauch. konf., Tr. Matem. tsentra im. N. I. Lobachevskogo, 23, Izd-vo Kazansk. matem. o-va, Kazan, 2004, 80–81

[4] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983, 152 pp. | MR

[5] Vuorinen M., “Conformal geometry and quasiregular mappings”, Lect. Notes in Math., 1319, Springer-Verlag, Berlin e.o., 1988, I–XX ; 1–209 | MR | Zbl

[6] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986, 304 pp. | MR

[7] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR

[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[9] Aseev V. V., Sychev A. V., “O mnozhestvakh, ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. matem. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl

[10] Yang Sh., “Monotone functions and extremal functions for condensers in $\overline{R^n}$”, Ann. Acad. Sci. Fenn., Ser. A1, 16 (1991), 95–112 | MR | Zbl

[11] Jarvi P., Vuorinen M., “Uniformly perfect sets and quasiregular mappings”, J. London Math. Soc., Part 3, 54:174 (1996), 515–529 | MR

[12] Aseev V. V., “Popravka k state: Deformatsiya plastin malykh kondensatorov i problema P. P. Belinskogo”, Sib. matem. zhurn., 44:1 (2003), 232–235 | MR | Zbl

[13] Caraman P., “Relations between $p$-capacity and $p$-module, II”, Rev. Roumaine Math. Pures Appl., 39:6 (1994), 555–577 | MR

[14] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp. | MR

[15] Mazya V. G., “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestn. LGU, Vyp. 3, 1970, no. 13, 42–55

[16] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl

[17] Teichmüller O., “Untersuchungen über konforme und quasikonforme Abbildungen”, Deutsche Math., 3 (1938), 621–678

[18] Mityuk I. P., “Privedenii modul u vipadku prostoru”, DAN URSR, 5 (1964), 563–566

[19] Mityuk I. P., “Pro kvazikonformni vidobrazhennya v prostori”, Dopovidi AN URSR, 1964, no. 8, 1022–1025 | Zbl

[20] Mityuk I. P., “Obobschennyi privedennyi modul i nekotorye ego svoistva”, Izv. vuzov. Matematika, 1964, no. 2, 110–119 | Zbl

[21] Levitskii B. E., Mityuk I. P., ““Uzkie” teoremy o prostranstvennykh modulyakh”, DAN SSSR, 248:4 (1979), 780–783 | MR

[22] Levitskii B. E., “Privedennyi $p$-modul i vnutrennii $p$-garmonicheskii radius”, DAN SSSR, 316:4 (1991), 812–815 | MR

[23] Miklyukov V. M., “O nekotorykh granichnykh zadachakh teorii konformnykh otobrazhenii”, Sib. matem. zhurn., 18:5 (1977), 1111–1124 | MR | Zbl

[24] Dubinin V. N., “Privedennye moduli otkrytykh mnozhestv v teorii analiticheskikh funktsii”, Dokl. RAN, 363:6 (1998), 731–734 | MR | Zbl

[25] Dubinin V. N., Eirikh N. V., “Obobschennyi privedennyi modul”, Dalnevost. matem. zhurn., 3:2 (2002), 147–162 | MR

[26] Kovalev L. V., “Monotonnost obobschennogo privedennogo modulya”, Zap. nauch. semin. POMI, 276, 2001, 219–236 | MR | Zbl

[27] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[28] Dubinin V. N., Emkosti kondensatorov v geometricheskoi teorii funktsii, Izd-vo Dalnevostochn. un-ta, Vladivostok, 2003, 116 pp.

[29] Kunzi H. P., Quasikonforme Abbildungen, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1960, 182 pp. | MR

[30] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR

[31] Aksentev L. A., “Vypuklost poverkhnosti konformnogo radiusa i otsenki koeffitsientov otobrazhayuschei funktsii”, Izv. vuzov. Matematika, 2004, no. 4, 8–15 | MR

[32] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[33] Bagby T., “The modulus of plane condenser”, J. Math. Mech., 17:4 (1967), 315–329 | MR | Zbl

[34] Tsuji M., Potential theory in modern function theory, Maruzen Co. Ltd., 1959, 590 pp. | MR | Zbl