Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2005), pp. 52-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_9_a5,
     author = {A. Yu. Novosel'tsev and I. B. Simonenko},
     title = {Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--56},
     publisher = {mathdoc},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/}
}
TY  - JOUR
AU  - A. Yu. Novosel'tsev
AU  - I. B. Simonenko
TI  - Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 52
EP  - 56
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/
LA  - ru
ID  - IVM_2005_9_a5
ER  - 
%0 Journal Article
%A A. Yu. Novosel'tsev
%A I. B. Simonenko
%T Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 52-56
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/
%G ru
%F IVM_2005_9_a5
A. Yu. Novosel'tsev; I. B. Simonenko. Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2005), pp. 52-56. http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/

[1] Serra S., “On the extreme eigenvalues of Hermitian $($block$)$ Toeplitz matrices”, Linear Algebra and its Applications, 270 (1997), 109–129 | MR

[2] Szegö G., “Beiträge zur Theorie der Toeplitzschen Formen, I”, Math. Ztschr., 1920, no. 6, 167–202 | DOI | MR

[3] Szegö G., “Beiträge zur Theorie der Toeplitzschen Formen, II”, Math. Ztschr., 1921, no. 9, 167–190 | DOI | MR

[4] Szegö G., “On certain Hermitian forms associated with the Fourier series of a positive function”, Festskrift Marcel Riesz, Lund, 1952, 228–238 | MR | Zbl

[5] Grenander U., Szegö G., Toeplitz forms and their applications, Chelsea, New York, 1984, 245 pp. | MR

[6] Grenander U., Segë G., Teplitsevy formy i ikh prilozheniya, In. lit., M., 1961, 308 pp. | MR | Zbl