Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_9_a5, author = {A. Yu. Novosel'tsev and I. B. Simonenko}, title = {Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {52--56}, publisher = {mathdoc}, number = {9}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/} }
TY - JOUR AU - A. Yu. Novosel'tsev AU - I. B. Simonenko TI - Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 52 EP - 56 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/ LA - ru ID - IVM_2005_9_a5 ER -
%0 Journal Article %A A. Yu. Novosel'tsev %A I. B. Simonenko %T Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2005 %P 52-56 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/ %G ru %F IVM_2005_9_a5
A. Yu. Novosel'tsev; I. B. Simonenko. Dependence of the asymptotics of the higher eigenvalues of a truncated continual convolution on the rate at which the symbol attains its maximum. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2005), pp. 52-56. http://geodesic.mathdoc.fr/item/IVM_2005_9_a5/