Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_8_a9, author = {V. V. Klyuchev}, title = {On necessary conditions for the slow convergence of a class of methods for solving an inverse {Cauchy} problem in a {Banach} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {78--81}, publisher = {mathdoc}, number = {8}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/} }
TY - JOUR AU - V. V. Klyuchev TI - On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 78 EP - 81 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/ LA - ru ID - IVM_2005_8_a9 ER -
%0 Journal Article %A V. V. Klyuchev %T On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2005 %P 78-81 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/ %G ru %F IVM_2005_8_a9
V. V. Klyuchev. On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 78-81. http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/
[1] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR
[2] Vainikko G.M., Veretennikov A.Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986, 181 pp. | MR | Zbl
[3] Bakushinskii A.B., Goncharskii A.V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR
[4] Bakushinskii A.B., Kokurin M.Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002, 192 pp.
[5] Hohage T., “Regularization of exponentially illposed problems”, Numer. Funct. Anal. and Optimiz., 21:3, 4 (2000), 439–464 | DOI | MR | Zbl
[6] Hohage T., “Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for the inverse potential and inverse scattering problem”, Inverse Problems, 13:6 (1997), 1279–1299 | DOI | MR | Zbl
[7] Kokurin M.Yu., Klyuchev V.V., “O logarifmicheskikh otsenkakh skorosti skhodimosti metodov resheniya obratnoi zadachi Koshi v banakhovom prostranstve”, Izv. vuzov. Matematika, 2004, no. 3, 73–75 | MR | Zbl
[8] Krein S.G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR
[9] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR
[10] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.