On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_8_a9,
     author = {V. V. Klyuchev},
     title = {On necessary conditions for the slow convergence of a class of methods for solving an inverse {Cauchy} problem in a {Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--81},
     publisher = {mathdoc},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/}
}
TY  - JOUR
AU  - V. V. Klyuchev
TI  - On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 78
EP  - 81
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/
LA  - ru
ID  - IVM_2005_8_a9
ER  - 
%0 Journal Article
%A V. V. Klyuchev
%T On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 78-81
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/
%G ru
%F IVM_2005_8_a9
V. V. Klyuchev. On necessary conditions for the slow convergence of a class of methods for solving an inverse Cauchy problem in a Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 78-81. http://geodesic.mathdoc.fr/item/IVM_2005_8_a9/

[1] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR

[2] Vainikko G.M., Veretennikov A.Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986, 181 pp. | MR | Zbl

[3] Bakushinskii A.B., Goncharskii A.V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[4] Bakushinskii A.B., Kokurin M.Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002, 192 pp.

[5] Hohage T., “Regularization of exponentially illposed problems”, Numer. Funct. Anal. and Optimiz., 21:3, 4 (2000), 439–464 | DOI | MR | Zbl

[6] Hohage T., “Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for the inverse potential and inverse scattering problem”, Inverse Problems, 13:6 (1997), 1279–1299 | DOI | MR | Zbl

[7] Kokurin M.Yu., Klyuchev V.V., “O logarifmicheskikh otsenkakh skorosti skhodimosti metodov resheniya obratnoi zadachi Koshi v banakhovom prostranstve”, Izv. vuzov. Matematika, 2004, no. 3, 73–75 | MR | Zbl

[8] Krein S.G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[9] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[10] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.