Approximate solutions in the problem of asymptotic attainability
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 63-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_8_a7,
     author = {A. G. Chentsov},
     title = {Approximate solutions in the problem of asymptotic attainability},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--73},
     publisher = {mathdoc},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_8_a7/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Approximate solutions in the problem of asymptotic attainability
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 63
EP  - 73
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_8_a7/
LA  - ru
ID  - IVM_2005_8_a7
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Approximate solutions in the problem of asymptotic attainability
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 63-73
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_8_a7/
%G ru
%F IVM_2005_8_a7
A. G. Chentsov. Approximate solutions in the problem of asymptotic attainability. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 63-73. http://geodesic.mathdoc.fr/item/IVM_2005_8_a7/

[1] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[2] Chentsov A.G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York, London, and Moscow, 1996, 244 pp. | MR | Zbl

[3] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[4] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[5] Chentsov A.G. and Morina S.I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[6] Chentsov A.G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 322 pp. | MR | Zbl

[7] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[8] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1970, 488 pp. | MR

[9] Chentsov A.G., “Dvuznachnye mery kak obobschennye elementy: problema rasshireniya sistemy uslovii”, Dokl. RAN, 374:5 (2000), 611–614 | MR | Zbl

[10] Chentsov A.G., “Two-valued measures and zero-dimensional topologies”, Functional Differential Equations, 9:1–2 (2002), 71–89 | MR | Zbl

[11] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[12] Chentsov A.G., “Two-valued measures: finite additivity and countable additivity”, Functional Differential Equations, 2000, no. 3–4, 231–257 | MR | Zbl

[13] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[14] Bhaskara Rao K.P.S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, N. Y., 1983, 253 pp. | MR | Zbl

[15] Chentsov A.G., “K voprosu o postroenii korrektnykh rasshirenii v klasse konechno-additivnykh mer”, Izv. vuzov. Matematika, 2002, no. 2, 58–80 | MR | Zbl

[16] Chentsov A.G., “Universal properties of generalized integral constraints in the class of finitely additive measures”, Functional Differential Equations, 5:1–2 (1998), 69–105 | MR | Zbl

[17] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR