Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_8_a1, author = {E. V. Arkharov}, title = {Iterative methods for regularizing the coupled pseudo-inversion problem}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {6--13}, publisher = {mathdoc}, number = {8}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_8_a1/} }
E. V. Arkharov. Iterative methods for regularizing the coupled pseudo-inversion problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 6-13. http://geodesic.mathdoc.fr/item/IVM_2005_8_a1/
[1] Morozov V.A., Kirsanova N.N., “Ob odnom obobschenii metoda regulyarizatsii”, Vychislit. metody i programm., 14, MGU, M., 1970, 40–45 | MR
[2] Morozov V.A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987, 240 pp. | MR
[3] Shafiev R.A., “O regulyarnykh metodakh vychisleniya $L$-psevdoobratnykh operatorov”, Zhurn. vychisl. matem. i matem. fiz., 23:3 (1983), 536–544 | MR | Zbl
[4] Shafiev R.A., “K teorii metodov regulyarizatsii Tikhonova–Lavrenteva”, DAN SSSR, 282:4 (1985), 804–808 | MR | Zbl
[5] Shafiev R.A., Psevdoobraschenie operatorov i nekotorye prilozheniya, Elm, Baku, 1989, 152 pp. | MR
[6] Vainikko G.M., Veretennikov A.Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986, 181 pp. | MR | Zbl
[7] Sadovnichii V.A., Teoriya operatorov, Ucheb. dlya vuzov, Vyssh. shkola, M., 1999, 368 pp. | MR