Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 63-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_7_a8,
     author = {M. R. Timerbaev},
     title = {Weighted estimates for the solution of an anisotropically degenerate equation with {Neumann} boundary conditions at points of degeneracy},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--76},
     publisher = {mathdoc},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/}
}
TY  - JOUR
AU  - M. R. Timerbaev
TI  - Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 63
EP  - 76
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/
LA  - ru
ID  - IVM_2005_7_a8
ER  - 
%0 Journal Article
%A M. R. Timerbaev
%T Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 63-76
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/
%G ru
%F IVM_2005_7_a8
M. R. Timerbaev. Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 63-76. http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/

[1] Lizorkin P.I., Nikolskii S.M., “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva”, DAN SSSR, 257:2 (1981), 278–282 | MR | Zbl

[2] Kydyraliev S.K., “O povyshenii gladkosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 25:3 (1989), 529–531 | MR | Zbl

[3] Timerbaev M.R., “Vesovye otsenki resheniya zadachi Dirikhle s anizotropnym vyrozhdeniem na chasti granitsy”, Izv. vuzov. Matematika, 2003, no. 1, 60–73 | MR | Zbl

[4] Timerbaev M.R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 52:7 (2000), 1086–1093 | MR

[5] Dezin A.A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980, 207 pp. | MR | Zbl

[6] Tepoyan L.P., “Vyrozhdayuschiesya diffrentsialno-operatornye uravneniya vtorogo poryadka”, Differents. uravneniya, 23:8 (1987), 1366–1367 | MR

[7] Yataev N.M., “O vyrozhdayuschikhsya differentsialno-operatornykh uravneniyakh tretego poryadka”, Differents. uravneniya, 25:3 (1989), 477–481

[8] Dezin A.A., Differentsialno-operatornye uravneniya. Metod modelnykh operatorov v teorii granichnykh zadach, Tr. Matem. in-ta RAN im. V.A. Steklova, 229, 2000, 175 pp. | MR | Zbl

[9] Sobolev S.L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989, 254 pp. | MR

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl

[11] Trikomi F., Differentsialnye uravneniya, In. lit., M., 1962, 351 pp.

[12] Danford N., Shvarts Dzh., Lineinye operatory. Spektralnaya teoriya, In. lit., M., 1966, 1063 pp.

[13] Shakhmurov V.B., “Teoremy vlozheniya v abstraktnykh anizotropnykh prostranstvakh i ikh primeneniya”, DAN SSSR, 28:5 (1985), 1068–1072 | MR

[14] Timerbaev M.R., “Prostranstva s normoi grafika i usilennye prostranstva Soboleva, I”, Izv. vuzov. Matematika, 2003, no. 5, 55–65 | MR | Zbl