Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_7_a8, author = {M. R. Timerbaev}, title = {Weighted estimates for the solution of an anisotropically degenerate equation with {Neumann} boundary conditions at points of degeneracy}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {63--76}, publisher = {mathdoc}, number = {7}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/} }
TY - JOUR AU - M. R. Timerbaev TI - Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 63 EP - 76 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/ LA - ru ID - IVM_2005_7_a8 ER -
%0 Journal Article %A M. R. Timerbaev %T Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2005 %P 63-76 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/ %G ru %F IVM_2005_7_a8
M. R. Timerbaev. Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 63-76. http://geodesic.mathdoc.fr/item/IVM_2005_7_a8/
[1] Lizorkin P.I., Nikolskii S.M., “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva”, DAN SSSR, 257:2 (1981), 278–282 | MR | Zbl
[2] Kydyraliev S.K., “O povyshenii gladkosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 25:3 (1989), 529–531 | MR | Zbl
[3] Timerbaev M.R., “Vesovye otsenki resheniya zadachi Dirikhle s anizotropnym vyrozhdeniem na chasti granitsy”, Izv. vuzov. Matematika, 2003, no. 1, 60–73 | MR | Zbl
[4] Timerbaev M.R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 52:7 (2000), 1086–1093 | MR
[5] Dezin A.A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980, 207 pp. | MR | Zbl
[6] Tepoyan L.P., “Vyrozhdayuschiesya diffrentsialno-operatornye uravneniya vtorogo poryadka”, Differents. uravneniya, 23:8 (1987), 1366–1367 | MR
[7] Yataev N.M., “O vyrozhdayuschikhsya differentsialno-operatornykh uravneniyakh tretego poryadka”, Differents. uravneniya, 25:3 (1989), 477–481
[8] Dezin A.A., Differentsialno-operatornye uravneniya. Metod modelnykh operatorov v teorii granichnykh zadach, Tr. Matem. in-ta RAN im. V.A. Steklova, 229, 2000, 175 pp. | MR | Zbl
[9] Sobolev S.L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989, 254 pp. | MR
[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[11] Trikomi F., Differentsialnye uravneniya, In. lit., M., 1962, 351 pp.
[12] Danford N., Shvarts Dzh., Lineinye operatory. Spektralnaya teoriya, In. lit., M., 1966, 1063 pp.
[13] Shakhmurov V.B., “Teoremy vlozheniya v abstraktnykh anizotropnykh prostranstvakh i ikh primeneniya”, DAN SSSR, 28:5 (1985), 1068–1072 | MR
[14] Timerbaev M.R., “Prostranstva s normoi grafika i usilennye prostranstva Soboleva, I”, Izv. vuzov. Matematika, 2003, no. 5, 55–65 | MR | Zbl