Strongly resonance elliptic variational inequalities with discontinuous nonlinearities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_7_a6,
     author = {V. N. Pavlenko and E. A. Chizh},
     title = {Strongly resonance elliptic variational inequalities with discontinuous nonlinearities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--56},
     publisher = {mathdoc},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - E. A. Chizh
TI  - Strongly resonance elliptic variational inequalities with discontinuous nonlinearities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 49
EP  - 56
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/
LA  - ru
ID  - IVM_2005_7_a6
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A E. A. Chizh
%T Strongly resonance elliptic variational inequalities with discontinuous nonlinearities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 49-56
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/
%G ru
%F IVM_2005_7_a6
V. N. Pavlenko; E. A. Chizh. Strongly resonance elliptic variational inequalities with discontinuous nonlinearities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 49-56. http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/

[1] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 540 pp. | MR

[2] Adly S., Goeleven D. and Thera M., “Recession mappings and noncoercitive variational inequalities”, Nonlinear Anal., 26:9 (1996), 1573–1603 | DOI | MR | Zbl

[3] Pavlenko V.N., “Teoremy suschestvovaniya dlya ellipticheskikh variatsionnykh neravenstv s kvazipotentsialnymi operatorami”, Differents. uravneniya, 24:8 (1988), 1397–1402 | MR | Zbl

[4] Pavlenko V.N., “Polupravilnye resheniya dlya ellipticheskikh variatsionnykh neravenstv s razryvnymi nelineinostyami”, Ukr. matem. zhurn., 43:2 (1991), 230–235 | MR | Zbl

[5] Pavlenko V.N., “O razreshimosti variatsionnykh neravenstv s razryvnymi polumonotonnymi operatorami”, Ukr. matem. zhurn., 45:3 (199), 443–447 | MR | Zbl

[6] Chang K.-C., “Free boundary problems and the set-valued mappings”, J. Different. Eq., 49:1 (1983), 1–28 | DOI | MR | Zbl

[7] Pavlenko V.N., Uravneniya i variatsionnye neravenstva s razryvnymi nelineinostyami, Diss. ... dokt. fiz.-matem. nauk, Ekaterinburg, 1995, 149 pp.

[8] Pavlenko V.N., Vinokur V.V., “Rezonansnye kraevye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matematika, 2001, no. 5, 43–58 | MR | Zbl

[9] Pavlenko V.N., Vinokur V.V., “Teoremy suschestvovaniya dlya uravnenii s nekoertsitivnymi razryvnymi operatorami”, Ukr. matem. zhurn., 54:3 (2002), 349–363 | MR | Zbl

[10] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl

[11] Pavlenko V.N., Variatsionnyi metod dlya uravnenii s razryvnymi operatorami, Ucheb. posobie, Izd. tsentr ChelGU, Chelyabinsk, 1997, 75 pp.

[12] Krasnoselskii M.A., Pokrovskii A.V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp. | MR

[13] Chang K.-C., “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl

[14] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 416 pp. | MR | Zbl