Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_7_a6, author = {V. N. Pavlenko and E. A. Chizh}, title = {Strongly resonance elliptic variational inequalities with discontinuous nonlinearities}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {49--56}, publisher = {mathdoc}, number = {7}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/} }
TY - JOUR AU - V. N. Pavlenko AU - E. A. Chizh TI - Strongly resonance elliptic variational inequalities with discontinuous nonlinearities JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 49 EP - 56 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/ LA - ru ID - IVM_2005_7_a6 ER -
V. N. Pavlenko; E. A. Chizh. Strongly resonance elliptic variational inequalities with discontinuous nonlinearities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 49-56. http://geodesic.mathdoc.fr/item/IVM_2005_7_a6/
[1] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 540 pp. | MR
[2] Adly S., Goeleven D. and Thera M., “Recession mappings and noncoercitive variational inequalities”, Nonlinear Anal., 26:9 (1996), 1573–1603 | DOI | MR | Zbl
[3] Pavlenko V.N., “Teoremy suschestvovaniya dlya ellipticheskikh variatsionnykh neravenstv s kvazipotentsialnymi operatorami”, Differents. uravneniya, 24:8 (1988), 1397–1402 | MR | Zbl
[4] Pavlenko V.N., “Polupravilnye resheniya dlya ellipticheskikh variatsionnykh neravenstv s razryvnymi nelineinostyami”, Ukr. matem. zhurn., 43:2 (1991), 230–235 | MR | Zbl
[5] Pavlenko V.N., “O razreshimosti variatsionnykh neravenstv s razryvnymi polumonotonnymi operatorami”, Ukr. matem. zhurn., 45:3 (199), 443–447 | MR | Zbl
[6] Chang K.-C., “Free boundary problems and the set-valued mappings”, J. Different. Eq., 49:1 (1983), 1–28 | DOI | MR | Zbl
[7] Pavlenko V.N., Uravneniya i variatsionnye neravenstva s razryvnymi nelineinostyami, Diss. ... dokt. fiz.-matem. nauk, Ekaterinburg, 1995, 149 pp.
[8] Pavlenko V.N., Vinokur V.V., “Rezonansnye kraevye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matematika, 2001, no. 5, 43–58 | MR | Zbl
[9] Pavlenko V.N., Vinokur V.V., “Teoremy suschestvovaniya dlya uravnenii s nekoertsitivnymi razryvnymi operatorami”, Ukr. matem. zhurn., 54:3 (2002), 349–363 | MR | Zbl
[10] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl
[11] Pavlenko V.N., Variatsionnyi metod dlya uravnenii s razryvnymi operatorami, Ucheb. posobie, Izd. tsentr ChelGU, Chelyabinsk, 1997, 75 pp.
[12] Krasnoselskii M.A., Pokrovskii A.V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp. | MR
[13] Chang K.-C., “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl
[14] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 416 pp. | MR | Zbl