The bitangent Bianchi transformation of a submanifold $H^n$ of constant negative curvature of the Euclidean space $R^{2n}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 43-48
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2005_7_a5,
author = {L. A. Masal'tsev},
title = {The bitangent {Bianchi} transformation of a submanifold $H^n$ of constant negative curvature of the {Euclidean} space $R^{2n}$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {43--48},
year = {2005},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2005_7_a5/}
}
TY - JOUR
AU - L. A. Masal'tsev
TI - The bitangent Bianchi transformation of a submanifold $H^n$ of constant negative curvature of the Euclidean space $R^{2n}$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2005
SP - 43
EP - 48
IS - 7
UR - http://geodesic.mathdoc.fr/item/IVM_2005_7_a5/
LA - ru
ID - IVM_2005_7_a5
ER -
%0 Journal Article
%A L. A. Masal'tsev
%T The bitangent Bianchi transformation of a submanifold $H^n$ of constant negative curvature of the Euclidean space $R^{2n}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 43-48
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2005_7_a5/
%G ru
%F IVM_2005_7_a5
L. A. Masal'tsev. The bitangent Bianchi transformation of a submanifold $H^n$ of constant negative curvature of the Euclidean space $R^{2n}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 43-48. http://geodesic.mathdoc.fr/item/IVM_2005_7_a5/
[1] Aminov Yu.A., Geometriya podmnogoobrazii, Nauk. dumka, Kiev, 2002, 467 pp. | Zbl
[2] Aminov Yu., Sym A., “On Bianchi and Backlund transformations of two-dimensional surfaces in $E^4$”, Mathem. Physics, Analysis and Geometry, 3 (2000), 75–89 | DOI | MR | Zbl
[3] Aminov Yu.A., “Preobrazovanie Bianki dlya oblasti mnogomernogo prostranstva Lobachevskogo”, Ukr. geom. sb., 1978, no. 21, 3–5 | MR | Zbl
[4] Eizenkhart L.P., Rimanova geometriya, In. lit., M., 1948, 312 pp.