Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_7_a4, author = {B. S. Kochkarev}, title = {Structural properties of a class of maximal {Sperner} families of subsets}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {37--42}, publisher = {mathdoc}, number = {7}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_7_a4/} }
B. S. Kochkarev. Structural properties of a class of maximal Sperner families of subsets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2005), pp. 37-42. http://geodesic.mathdoc.fr/item/IVM_2005_7_a4/
[1] Erdos P., Kleitman D.J., “Extremal problems among subsets of a set”, Discrete Math., 8 (1974), 281–294 | DOI | MR
[2] Sperner E., “Ein Satz über Untermengen einer endlichen Menge”, Math. Z., 27 (1928), 544–548 | DOI | MR | Zbl
[3] Korshunov A.D., “The number and the structure typical Sperner and $k$-non-separable families of subsets of a finit”, Fundamentals of Computations Theory (International Conference FCT'87), Kazan, 1987, 239–243 | Zbl
[4] Kochkarev B.S., “Strukturnye svoistva odnogo klassa maksimalnykh shpernerovykh semeistv podmnozhestv konechnogo mnozhestva”, Logika i prilozheniya, Tez. mezhdunarodn. konf., pocv. 60-letiyu so dnya rozhdeniya akad. Yu.L. Ershova, Novosibirsk, 2000, 61–62
[5] Kochkarev B.S., “Ob odnom klasse maksimalnykh shpernerovykh semeistv podmnozhestv konechnogo mnozhestva”, Problemy sovremennoi matematiki, Materialy nauchnoi konf., posv. 125-letiyu KGPU (Kazan, 22–24 oktyabrya 2001 g.), Tr. matem. tsentra im. N.I. Lobachevskogo, 11, Unipress, Kazan, 2001, 160–162
[6] Kochkarev B.S., “Otsenka slozhnosti formul dlya monotonnykh funktsii algebry logiki v klasse diz'yunktivnykh normalnykh form (d. n. f.)”, Uchen. zap. Kazansk. un-ta, 125, no. 6, 1965, 49–57