A real analogue of the Bryant transformation and rational integral curves of a given distribution in $\mathbb P^3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_6_a7,
     author = {Yu. L. Giluch},
     title = {A real analogue of the {Bryant} transformation and rational integral curves of a given distribution in $\mathbb P^3$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--81},
     publisher = {mathdoc},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_6_a7/}
}
TY  - JOUR
AU  - Yu. L. Giluch
TI  - A real analogue of the Bryant transformation and rational integral curves of a given distribution in $\mathbb P^3$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 76
EP  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_6_a7/
LA  - ru
ID  - IVM_2005_6_a7
ER  - 
%0 Journal Article
%A Yu. L. Giluch
%T A real analogue of the Bryant transformation and rational integral curves of a given distribution in $\mathbb P^3$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 76-81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_6_a7/
%G ru
%F IVM_2005_6_a7
Yu. L. Giluch. A real analogue of the Bryant transformation and rational integral curves of a given distribution in $\mathbb P^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 76-81. http://geodesic.mathdoc.fr/item/IVM_2005_6_a7/

[1] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, t. 2, Nauka, M., 1974, 432 pp. | MR

[2] Bryant R., “Conformal and minimal immersions of compact surfaces into the four sphere”, J. Different. Geom., 17 (1982), 455–473 | MR | Zbl

[3] Landsberg J.M., Manivel L., Legendrian varieties, http://ru.arxiv.org/alg-geom/0407279.pdf | MR

[4] Sintsov D.M., Raboty po negolonomnoi geometrii, Vischa shkola, Kiev, 1972, 391 pp. | MR | Zbl

[5] Chernenko V.N., “O soedinimosti dvukh tochek trekhmernogo $C^{\infty}$-mnogoobraziya integralnoi krivoi ne vpolne integriruemoi differentsialnoi sistemy”, Geometrich. sb., 19, Izd-vo Tomsk. un-ta, Tomsk, 1978, 3–11

[6] Yun-Gang Ye, Complex contact threefolds and their contact curves, http://ru.arxiv.org/alg-geom/9202003.pdf

[7] Rozenfeld B.A., Mnogomernye prostranstva, Nauka, M., 1966, 530 pp. | MR

[8] Konnov V.V., “Kasatelnoe rassloenie proektivnogo prostranstva i mnogoobrazie nevyrozhdennykh nul-par”, Matem. zametki, 70:5 (2001), 718–735 | MR | Zbl

[9] Shafarevich I.R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1988, 352 pp. | MR

[10] Burau W., Mehrdimensionale projektive und höhere Geometrie, Berlin, 1961, 436 S. | MR

[11] Ibragimov N.Kh., “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike”, UMN, 47:4 (1992), 83–144 | MR | Zbl

[12] Giluch Yu.L., “Veschestvennyi analog preobrazovaniya Braianta”, Materialy mezhdunarodn. molodezhnoi nauchnoi shkoly-konf. “Lobachevskie chteniya-2002”, Kazan, 2002, 20–21

[13] Giluch Yu.L., “Negolonomnaya veschestvennaya algebraicheskaya poverkhnost v $\mathbb{RP}^3$”, Tez. dokl. 5-i mezhdunarodnoi konf. po geometrii i topologii (Cherkassy (Ukraina), 2003), 26–28

[14] Giluch Yu.L., “O ratsionalnykh integralnykh krivykh uravneniya Pfaffa v trekhmernom proektivnom prostranstve”, Materialy tretei vserossiisk. molodezhnoi nauchn. shkoly-konf. “Lobachevskie chteniya-2003”, Kazan, 2003, 96–98