On the convergence of a semi-explicit method with splitting for solving variational inequalities of the second kind
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_6_a5,
     author = {O. A. Zadvornov},
     title = {On the convergence of a semi-explicit method with splitting for solving variational inequalities of the second kind},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--70},
     publisher = {mathdoc},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_6_a5/}
}
TY  - JOUR
AU  - O. A. Zadvornov
TI  - On the convergence of a semi-explicit method with splitting for solving variational inequalities of the second kind
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 61
EP  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_6_a5/
LA  - ru
ID  - IVM_2005_6_a5
ER  - 
%0 Journal Article
%A O. A. Zadvornov
%T On the convergence of a semi-explicit method with splitting for solving variational inequalities of the second kind
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 61-70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_6_a5/
%G ru
%F IVM_2005_6_a5
O. A. Zadvornov. On the convergence of a semi-explicit method with splitting for solving variational inequalities of the second kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 61-70. http://geodesic.mathdoc.fr/item/IVM_2005_6_a5/

[1] Golshtein E.G., Tretyakov N.V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[3] Panagiotopulos P., Neravenstva v mekhanike i ikh prilozheniya. Vypuklye i nevypuklye funktsii energii, Mir, M., 1989, 496 pp. | MR

[4] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[5] Badriev I.B., Shagidullin R.R., “Issledovanie odnomernykh uravnenii staticheskogo sostoyaniya myagkoi obolochki i algoritma ikh resheniya”, Izv. vuzov. Matematika, 1992, no. 1, 8–16 | MR | Zbl

[6] Lapin A.V., “Ob issledovanii nekotorykh zadach nelineinoi teorii filtratsii”, Zhurn. vychisl. matem. i matem. fiziki, 19:3 (1979), 689–700 | MR | Zbl

[7] Glovinski R.G., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 576 pp. | MR

[8] Gabay D., Merscier B., “A dual algorithm for the solution of nonlinear variational problems via finite element approximation”, Computer Math. Appl., 2 (1976), 17–40 | DOI | Zbl

[9] Fortin M., Glowinski R., Résolution numériques de problèmes aux limites par des méthodes de Lagrangien augmenté, Dunod, Paris, 1983, 320 pp. | MR

[10] Badriev I.B., Zadvornov O.A., “Iteratsionnye metody resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Izv. vuzov. Matematika, 2003, no. 1, 20–28 | MR | Zbl

[11] Badriev I.B., Zadvornov O.A., “Metod dekompozitsii dlya resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Differents. uravneniya, 39:7 (2003), 945–951 | MR

[12] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl

[13] Maruster S., “The solution by iteration of nonlinear equations in Hilbert spaces”, Proc. Amer. Math. Soc., 63:1 (1977), 69–73 | DOI | MR | Zbl

[14] Opial Z., “Weak convergence of the sequence of successive approximations for nonexpansive mappings”, Bull. Amer. Math. Soc., 73 (1967), 591–597 | DOI | MR | Zbl