Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 12-27

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_6_a1,
     author = {A. V. Aminova and N. A.-M. Aminov},
     title = {Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--27},
     publisher = {mathdoc},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - N. A.-M. Aminov
TI  - Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 12
EP  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/
LA  - ru
ID  - IVM_2005_6_a1
ER  - 
%0 Journal Article
%A A. V. Aminova
%A N. A.-M. Aminov
%T Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 12-27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/
%G ru
%F IVM_2005_6_a1
A. V. Aminova; N. A.-M. Aminov. Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 12-27. http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/