Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 12-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_6_a1,
     author = {A. V. Aminova and N. A.-M. Aminov},
     title = {Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--27},
     publisher = {mathdoc},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - N. A.-M. Aminov
TI  - Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 12
EP  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/
LA  - ru
ID  - IVM_2005_6_a1
ER  - 
%0 Journal Article
%A A. V. Aminova
%A N. A.-M. Aminov
%T Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 12-27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/
%G ru
%F IVM_2005_6_a1
A. V. Aminova; N. A.-M. Aminov. Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the abelian subgroup $G_3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2005), pp. 12-27. http://geodesic.mathdoc.fr/item/IVM_2005_6_a1/

[1] Birkgof G., Gidrodinamika. Postanovka zadach, rezultaty i podobie, In. lit., M., 1954

[2] Ovsyannikov M.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[3] Ibragimov N.Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[4] Anderson R.L., Ibragimov N.H., Lie–Bäcklund transformations in applications, SIAM Studies in Appl. Math., 1, Philadelphia, 1979 | MR

[5] Vinogradov A.M., Krasilschik I.S., Lychagin V.V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986, 335 pp. | MR

[6] Mischenko A.S., Fomenko A.T., “Obobschennyi metod integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[7] Dubrovin B.A., Krichever I.M., Novikov S.P., “Integriruemye sistemy, I”, Itogi nauki i tekhn. Sovremen. probl. matem., 4, VINITI, M., 1985, 179–284 | MR | Zbl

[8] Dryuma V.S., Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, Preprint IM s VTs AN MSSR, Kishinev, 1986, 54 pp.

[9] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR | Zbl

[10] Aminova A.V., “Proektivnye preobrazovaniya i simmetrii differentsialnykh uravnenii”, Matem. sb., 186:12 (1995), 21–36 | MR | Zbl

[11] Aminova A.V., Aminov N.A.-M., “Proektivnaya geometriya obyknovennykh differentsialnykh sistem”, Yubileinaya nauchn. konf. fizichesk. fakulteta Kazanskogo un-ta, Izd-vo Kazansk. un-ta, Kazan, 2004, 106

[12] Sultanov A.Ya., “Trekhmernye prostranstva proektivnoi svyaznosti maloi podvizhnosti”, Uchen. zap. Ryazansk. gos. ped. in-ta, 1974, 27–32 | MR

[13] Sultanov A.Ya., O nekotorykh trekhmernykh prostranstvakh proektivnoi svyaznosti, dopuskayuschikh pryamye proizvedeniya grupp dvizhenii, Dep. v VINITI, No 288-81, Penz. gos. ped. in-t, Penza, 1980, 20 pp.

[14] Sultanov A.Ya., Ob avtomorfizmakh v prostranstvakh proektivnoi svyaznosti, Dis. ... kand. fiz.-matem. nauk, Penzensk. gos. ped. in-t, Penza, 1981, 234 pp.

[15] Kruchkovich G.I., “Klassifikatsiya trekhmernykh rimanovykh prostranstv po gruppam dvizhenii”, UMN, 9:1 (1954), 3–40 | MR | Zbl

[16] Kruchkovich G.I., “O dvizheniyakh v rimanovykh prostranstvakh”, Matem. sb., 41:2 (1957), 195–220 | Zbl

[17] Petrov A.Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 495 pp. | MR

[18] Aminova A.V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003, 619 pp.

[19] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Kazan, 1962, 119–152 | MR

[20] Yano K., The theory of Lie derivatives and its applications, North-Holland Publ. Co., Amsterdam, 1957, 299 pp. | MR | Zbl

[21] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[22] Egorov I.P., “Dvizheniya v prostranstvakh affinnoi svyaznosti”, Dvizheniya v prostr. affin. svyaz., Kazan, 1965, 5–179 | MR

[23] Palais R.S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., no. 22, 1957, 123 pp. | MR

[24] Pontryagin L.S., Nepreryvnye gruppy, Nauka, M., 1973, 519 pp. | MR | Zbl