The geometry of submanifolds with the structure of a double fiber bundle in a pseudo-Euclidean Rashevskii space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2005), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_5_a0,
     author = {S. Kh. Arutyunyan},
     title = {The geometry of submanifolds with the structure of a double fiber bundle in a {pseudo-Euclidean} {Rashevskii} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_5_a0/}
}
TY  - JOUR
AU  - S. Kh. Arutyunyan
TI  - The geometry of submanifolds with the structure of a double fiber bundle in a pseudo-Euclidean Rashevskii space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 3
EP  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_5_a0/
LA  - ru
ID  - IVM_2005_5_a0
ER  - 
%0 Journal Article
%A S. Kh. Arutyunyan
%T The geometry of submanifolds with the structure of a double fiber bundle in a pseudo-Euclidean Rashevskii space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 3-13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_5_a0/
%G ru
%F IVM_2005_5_a0
S. Kh. Arutyunyan. The geometry of submanifolds with the structure of a double fiber bundle in a pseudo-Euclidean Rashevskii space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2005), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2005_5_a0/

[1] Rashevskii P.K., “Skalyarnoe pole v rassloennom prostranstve”, Tr. semin. po vektorn. i tenzorn. analizu, 6, MGU, M., 1948, 225–248

[2] Shirokov P.A., “Postoyannye polya vektorov i tenzorov vtorogo poryadka v rimanovykh prostranstvakh”, Izv. fiz.-matem. o-va pri Kazansk. un-te, 2:25 (1925), 86–114

[3] Vishnevskii V.V., “O parabolicheskom analoge $A$-prostranstv”, Izv. vuzov. Matematika, 1968, no. 1, 29–38

[4] Arutyunyan S.Kh., “Geometriya $n$-kratnogo integrala, zavisyaschego ot $n$ parametrov”, DAN ArmSSR, 61:1 (1975), 7–14 | MR | Zbl

[5] Laptev G.F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Matem. o-va, 2, 1953, 275–382 | MR | Zbl

[6] Vasilev A.M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987, 190 pp. | MR

[7] Arutyunyan S.Kh., “O nekotorykh klassakh differentsialno-geometricheskikh struktur psevdoevklidova prostranstva $E^{n+1}_{2(n+1)}$”, Izv. vuzov. Matematika, 1989, no. 10, 3–11 | MR

[8] Haroutunian S., “Geometry of multiple integrals depending on parameters and submanifolds of codimension two in pseudoeuclidean space $E^{n+1}_{2(n+1)}$”, Rendiconti del Seminario matematico di Messina, Serie 2, 1 (1994), 129–140

[9] Norden A.P., “Prostranstva dekartovoi kompozitsii”, Izv. vuzov. Matematika, 1963, no. 4, 117–128 | MR | Zbl