Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2005), pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_4_a9,
     author = {V. E. Fedorov and M. A. Sagadeeva},
     title = {Solutions, bounded on the line, of {Sobolev-type} linear equations with relatively sectorial operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--84},
     publisher = {mathdoc},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_4_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - M. A. Sagadeeva
TI  - Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 81
EP  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_4_a9/
LA  - ru
ID  - IVM_2005_4_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A M. A. Sagadeeva
%T Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 81-84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_4_a9/
%G ru
%F IVM_2005_4_a9
V. E. Fedorov; M. A. Sagadeeva. Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2005), pp. 81-84. http://geodesic.mathdoc.fr/item/IVM_2005_4_a9/

[1] Sviridyuk G.A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[2] Demidenko G.V., Uspenskii S.V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998, 438 pp. | MR | Zbl

[3] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1999, 313 pp. | MR | Zbl

[4] Egorov I.E., Pyatkov S.G., Popov S.V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000, 336 pp. | MR

[5] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 534 pp. | MR

[6] Massera Kh.L., Sheffer Kh.Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970, 456 pp. | MR | Zbl

[7] Levitan B.M., Zhikov V.V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978, 205 pp. | MR | Zbl

[8] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR

[9] Keller A.V., Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, Dis. ... kand. fiz.-matem. nauk, Chelyabinsk. gos. un-t, Chelyabinsk, 1997, 115 pp.

[10] Sviridyuk G.A., Fedorov V.E., “O edinitsakh analiticheskikh polugrupp operatorov s yadrami”, Sib. matem. zhurn., 39:3 (1998), 604–616 | MR

[11] Rutkas A.G., “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[12] Keller A.V., “Otnositelno spektralnaya teorema”, Vestn. Chelyab. gos. un-ta. Ser. matem., mekh., 1996, no. 1, 62–66