Boundary value problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2005), pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_3_a7,
     author = {E. A. Mazepa},
     title = {Boundary value problems and {Liouville} theorems for semilinear elliptic equations on {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--66},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_3_a7/}
}
TY  - JOUR
AU  - E. A. Mazepa
TI  - Boundary value problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 59
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_3_a7/
LA  - ru
ID  - IVM_2005_3_a7
ER  - 
%0 Journal Article
%A E. A. Mazepa
%T Boundary value problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 59-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_3_a7/
%G ru
%F IVM_2005_3_a7
E. A. Mazepa. Boundary value problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2005), pp. 59-66. http://geodesic.mathdoc.fr/item/IVM_2005_3_a7/

[1] Landis E.M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971, 288 pp. | MR

[2] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[3] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl

[4] Landis E.M., “O zadache Dirikhle dlya polulineinykh ellipticheskikh uravnenii”, Nelineinye granichnye zadachi, 1991, no. 3, 49–53

[5] Vazqnez J.-L., Verson L., “Solutions positives d'equations elliptiques semi-lineares sur des varietes riemanniennes compactes”, C.R. Acad. Sci., 312:I (1991), 811–815 | MR

[6] Garcia-Huidobro M., Manasevich R., Ubilla P., “Existence of positive solutions for some Dirichlet problems with an asymptotically homogeneous operator”, Electronic J. Diff. Eq., 1:10 (1995), 1–22 | MR

[7] Naito Y., Usami H., “Entire solutions of the inequality $\mathrm{div}\,(A(|Du|)Du)\geq f(u)$”, Math. Z., 225 (1997), 167–175 | DOI | MR | Zbl

[8] Ambrosio L., Cabre X., “Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of de Giorgi”, J. AMS, 13:4 (2000), 725–739 | MR | Zbl

[9] Mazepa E.A., “Kraevye zadachi dlya statsionarnogo uravneniya Shrëdingera na rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 43:3 (2002), 591–599 | MR | Zbl

[10] Grigoryan A.A., Nadirashvili N.S., “Liuvillevy teoremy i vneshnie kraevye zadachi”, Izv. vuzov. Matematika, 1987, no. 5, 25–33 | MR

[11] Losev A.G., “Ob odnom kriterii giperbolichnosti nekompaktnykh rimanovykh mnogoobrazii spetsialnogo vida”, Matem. zametki, 59:4 (1996), 558–564 | MR

[12] Losev A.G., Mazepa E.A., “Ogranichennye resheniya uravneniya Shrëdingera na nekompaktnykh rimanovykh mnogoobraziyakh spetsialnogo vida”, Dokl. RAN, 367:2 (1999), 166–167 | MR | Zbl

[13] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manifolds”, J. Diff. Geom., 18 (1983), 722–732 | MR

[14] Anderson M.T., “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18 (1983), 701–722 | MR | Zbl