Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_3_a5, author = {Yu. F. Korobeinik}, title = {On some spaces of functions infinitely differentiable in an open set of $\mathbf R^p$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {41--51}, publisher = {mathdoc}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/} }
TY - JOUR AU - Yu. F. Korobeinik TI - On some spaces of functions infinitely differentiable in an open set of $\mathbf R^p$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 41 EP - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/ LA - ru ID - IVM_2005_3_a5 ER -
Yu. F. Korobeinik. On some spaces of functions infinitely differentiable in an open set of $\mathbf R^p$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2005), pp. 41-51. http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/
[1] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 462 pp.
[2] Korobeinik Yu.F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl
[3] Korobeinik Yu.F., “O nekotorykh klassakh predstavlyayuschikh sistem i ikh preobrazovaniyakh. I”, Tr. Matem. tsentra im. Lobachevskogo, 14, Kazanskoe matem. o-vo, Kazan, 2002, 171–185 | MR | Zbl
[4] Edvards R., Funktsionalnyi analiz, Mir, M., 1969, 1071 pp.
[5] Korobeinik Yu.F., “Ob odnoi dvoistvennoi zadache. I. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97:2 (1975), 193–229 | MR | Zbl
[6] Mityagin B.S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl
[7] Zobin N.M., Krein S.G., Matematicheskii analiz gladkikh funktsii, Izd-vo Voronezhsk. un-ta, Voronezh, 1978, 143 pp.
[8] Pawlucki W., Plesniak W., “Extension of $C^{\infty}$ functions from sets with polynom cusps”, Studia Math., 88 (1988), 279–287 | MR | Zbl
[9] Goncharov A.P., Zakharyuta V.P., “Lineinye topologicheskie invarianty i prostranstva beskonechno differentsiruemykh funktsii”, Matem. analiz i ego prilozh., Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1985, 18–27 | MR
[10] Tidten M., “Fortsetzungen von $C^{\infty}$-Funktionen, welche auf einer abgeschlossen Menge im ${\mathbf R}^n$ definiert sind”, Manuscripta Math., 27 (1979), 291–312 | DOI | MR | Zbl
[11] Bonet J., Meise R.W., Taylor B.A., “Whitney`s extension theorem for non-quasianalitic classes of ultradifferentiable functions”, Studia Math., 91:2 (1991), 155–184 | MR
[12] Korobeinik Yu.F., “On absolutely representing systems in spaces of infinitely differentiable functions”, Studia Math., 139:2 (2000), 175–188 | MR | Zbl
[13] Korobeinik Yu.F., “Absolutely representing systems of exponentials in the spaces of infinitely-differentiable functions and extendability in the sense of Whitney”, Turkish J. Math., 25:4 (2001), 503–517 | MR | Zbl