On some spaces of functions infinitely differentiable in an open set of $\mathbf R^p$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2005), pp. 41-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_3_a5,
     author = {Yu. F. Korobeinik},
     title = {On some spaces of functions infinitely differentiable in an open set of $\mathbf  R^p$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--51},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - On some spaces of functions infinitely differentiable in an open set of $\mathbf  R^p$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 41
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/
LA  - ru
ID  - IVM_2005_3_a5
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T On some spaces of functions infinitely differentiable in an open set of $\mathbf  R^p$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 41-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/
%G ru
%F IVM_2005_3_a5
Yu. F. Korobeinik. On some spaces of functions infinitely differentiable in an open set of $\mathbf  R^p$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2005), pp. 41-51. http://geodesic.mathdoc.fr/item/IVM_2005_3_a5/

[1] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 462 pp.

[2] Korobeinik Yu.F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl

[3] Korobeinik Yu.F., “O nekotorykh klassakh predstavlyayuschikh sistem i ikh preobrazovaniyakh. I”, Tr. Matem. tsentra im. Lobachevskogo, 14, Kazanskoe matem. o-vo, Kazan, 2002, 171–185 | MR | Zbl

[4] Edvards R., Funktsionalnyi analiz, Mir, M., 1969, 1071 pp.

[5] Korobeinik Yu.F., “Ob odnoi dvoistvennoi zadache. I. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97:2 (1975), 193–229 | MR | Zbl

[6] Mityagin B.S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl

[7] Zobin N.M., Krein S.G., Matematicheskii analiz gladkikh funktsii, Izd-vo Voronezhsk. un-ta, Voronezh, 1978, 143 pp.

[8] Pawlucki W., Plesniak W., “Extension of $C^{\infty}$ functions from sets with polynom cusps”, Studia Math., 88 (1988), 279–287 | MR | Zbl

[9] Goncharov A.P., Zakharyuta V.P., “Lineinye topologicheskie invarianty i prostranstva beskonechno differentsiruemykh funktsii”, Matem. analiz i ego prilozh., Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1985, 18–27 | MR

[10] Tidten M., “Fortsetzungen von $C^{\infty}$-Funktionen, welche auf einer abgeschlossen Menge im ${\mathbf R}^n$ definiert sind”, Manuscripta Math., 27 (1979), 291–312 | DOI | MR | Zbl

[11] Bonet J., Meise R.W., Taylor B.A., “Whitney`s extension theorem for non-quasianalitic classes of ultradifferentiable functions”, Studia Math., 91:2 (1991), 155–184 | MR

[12] Korobeinik Yu.F., “On absolutely representing systems in spaces of infinitely differentiable functions”, Studia Math., 139:2 (2000), 175–188 | MR | Zbl

[13] Korobeinik Yu.F., “Absolutely representing systems of exponentials in the spaces of infinitely-differentiable functions and extendability in the sense of Whitney”, Turkish J. Math., 25:4 (2001), 503–517 | MR | Zbl