On error estimates for approximate solutions in problems of the linear theory of thermoelasticity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2005), pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_1_a7,
     author = {A. V. Muzalevskii and S. I. Repin},
     title = {On error estimates for approximate solutions in problems of the linear theory of thermoelasticity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--72},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_1_a7/}
}
TY  - JOUR
AU  - A. V. Muzalevskii
AU  - S. I. Repin
TI  - On error estimates for approximate solutions in problems of the linear theory of thermoelasticity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 64
EP  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_1_a7/
LA  - ru
ID  - IVM_2005_1_a7
ER  - 
%0 Journal Article
%A A. V. Muzalevskii
%A S. I. Repin
%T On error estimates for approximate solutions in problems of the linear theory of thermoelasticity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 64-72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_1_a7/
%G ru
%F IVM_2005_1_a7
A. V. Muzalevskii; S. I. Repin. On error estimates for approximate solutions in problems of the linear theory of thermoelasticity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2005), pp. 64-72. http://geodesic.mathdoc.fr/item/IVM_2005_1_a7/

[1] Ainsworth M., Oden J.T., A posteriori error estimation in finite element analysis, John Wiley Sons, Inc., 2000, 264 pp. | MR

[2] Babuška I., Strouboulis T., The finite element method and its reliability, Oxford University Press Inc., New York, 2001, 736 pp. | MR | Zbl

[3] Verfürth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley–Teubner, 1996, 127 pp. | Zbl

[4] Wahlbin L.B., Superconvergence in Galerkin finite element methods, Lect. Notes Math., 1605, Springer-Verlag, 1995 | MR | Zbl

[5] Zienkeiewicz O.C., Zhu J.Z., “A simple error estimator and adaptive procedure for practical engineering analysis”, Internat. J. Numer. Methods Engrg., 24 (1987), 337–357 | DOI | MR

[6] Repin S., “A posteriori error estimation for nonlinear variational problems by duality theory”, Zapiski Nauchnych Seminarov V.A. Steklov Math. Inst. in St.-Petersburg, 243, 1997, 201–214 | MR | Zbl

[7] Repin S., “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69 (2000), 481–500 | MR | Zbl

[8] Repin S.I., “Dvustoronnie otsenki otkloneniya ot tochnogo resheniya dlya ravnomerno ellipticheskikh uravnenii”, Tr. Sankt-Peterb. matem. o-va, 9 (2001), 148–179 | MR | Zbl

[9] Muzalevsky A.V., Repin S.I., “On two-sided error estimates for approximate solutions of problems in the linear theory of elasticity”, Russ. J. Numer. Anal. Math. Modelling, 18 (2003), 65–85 | DOI | MR | Zbl

[10] Timoshenko S.P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1979, 576 pp.

[11] Repin S., “A unified approach to a posteriori error estimation based on duality error majorants”, Math. Comput. Simul., 50 (1999), 305–321 | DOI | MR