Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_12_a4, author = {I. V. Konnov}, title = {A~dual-type approximate method for systems of variational inequalities}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {35--45}, publisher = {mathdoc}, number = {12}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_12_a4/} }
I. V. Konnov. A~dual-type approximate method for systems of variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2005), pp. 35-45. http://geodesic.mathdoc.fr/item/IVM_2005_12_a4/
[1] Patriksson M., Nonlinear programming and variational inequality problems: A unified approach, Kluwer Academic Publishers, Dordrecht, 1999, xiv + 334 pp. | MR | Zbl
[2] Nagurney A., Network economics: A variational inequality approach, Kluwer Academic Publishers, Dordrecht, 1999, xxi + 325 pp. | MR
[3] Konnov I.V., Combined relaxation methods for variational inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 2001, xi+ 181 pp. | MR
[4] Konnov I.V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl
[5] Konnov I.V., “Metod rasschepleniya s lineinym poiskom dlya pryamo-dvoistvennykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 43:4 (2003), 518–532 | MR | Zbl
[6] Konnov I.V., “Sistema pryamo-dvoistvennykh variatsionnykh neravenstv v usloviyakh monotonnosti”, Zhurn. vychisl. matem. i matem. fiz., 43:10 (2003), 1459–1466 | MR | Zbl
[7] Konnov I.V., “Application of splitting methods to a class of equilibrium problems”, Nonlinear and Convex Anal., 5:6 (2004), 71–83 | MR | Zbl
[8] Golyntein E.G., Tretyakov H.B., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR
[9] Zhu D.L., Marcotte P., “Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities”, SIAM J. Optimiz., 6:3 (1996), 714–726 | DOI | MR | Zbl
[10] Konnov I.V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl
[11] Konnov I.V., “Application of the proximal point method to nonmonotone equilibrium problems”, J. Optimiz. Theory and Appl., 119:2 (2003), 317–333 | DOI | MR | Zbl
[12] Lions P.L., Mercier B., “Splitting algorithm for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | MR | Zbl