A~dual-type approximate method for systems of variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2005), pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_12_a4,
     author = {I. V. Konnov},
     title = {A~dual-type approximate method for systems of variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--45},
     publisher = {mathdoc},
     number = {12},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_12_a4/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A~dual-type approximate method for systems of variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 35
EP  - 45
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_12_a4/
LA  - ru
ID  - IVM_2005_12_a4
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A~dual-type approximate method for systems of variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 35-45
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_12_a4/
%G ru
%F IVM_2005_12_a4
I. V. Konnov. A~dual-type approximate method for systems of variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2005), pp. 35-45. http://geodesic.mathdoc.fr/item/IVM_2005_12_a4/

[1] Patriksson M., Nonlinear programming and variational inequality problems: A unified approach, Kluwer Academic Publishers, Dordrecht, 1999, xiv + 334 pp. | MR | Zbl

[2] Nagurney A., Network economics: A variational inequality approach, Kluwer Academic Publishers, Dordrecht, 1999, xxi + 325 pp. | MR

[3] Konnov I.V., Combined relaxation methods for variational inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 2001, xi+ 181 pp. | MR

[4] Konnov I.V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl

[5] Konnov I.V., “Metod rasschepleniya s lineinym poiskom dlya pryamo-dvoistvennykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 43:4 (2003), 518–532 | MR | Zbl

[6] Konnov I.V., “Sistema pryamo-dvoistvennykh variatsionnykh neravenstv v usloviyakh monotonnosti”, Zhurn. vychisl. matem. i matem. fiz., 43:10 (2003), 1459–1466 | MR | Zbl

[7] Konnov I.V., “Application of splitting methods to a class of equilibrium problems”, Nonlinear and Convex Anal., 5:6 (2004), 71–83 | MR | Zbl

[8] Golyntein E.G., Tretyakov H.B., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[9] Zhu D.L., Marcotte P., “Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities”, SIAM J. Optimiz., 6:3 (1996), 714–726 | DOI | MR | Zbl

[10] Konnov I.V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl

[11] Konnov I.V., “Application of the proximal point method to nonmonotone equilibrium problems”, J. Optimiz. Theory and Appl., 119:2 (2003), 317–333 | DOI | MR | Zbl

[12] Lions P.L., Mercier B., “Splitting algorithm for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | MR | Zbl