Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_12_a3, author = {V. S. Klimov}, title = {On the convergence of the conditional gradient method}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--34}, publisher = {mathdoc}, number = {12}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_12_a3/} }
V. S. Klimov. On the convergence of the conditional gradient method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2005), pp. 27-34. http://geodesic.mathdoc.fr/item/IVM_2005_12_a3/
[1] Vasilev F.P., Metody resheniya ekstremalnykh zadach. Zadacha minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981, 400 pp. | MR
[2] Demyanov V.F., Rubinov A.M., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo LGU, L., 1968, 179 pp.
[3] Polyak B.T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR
[4] Pshenichnyi B.N., Danilin Yu.M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975, 319 pp. | MR
[5] Bobylev A.N., Emelyanov SV., Korovin S.K., Geometricheskie metody v variatsionnykh zadachakh, Izd-vo Magistr, M., 1998, 658 pp.
[6] Skrypnik I.V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990, 442 pp. | MR
[7] Klimov B.C., Senchakova N.V., “Ob otnositelnom vraschenii mnogoznachnykh potentsialnykh vektornykh polei”, Matem. sb., 182:10 (1991), 1393–1407
[8] Klimov B.C., “Beskonechnomernyi variant, teoremy Puankare–Khopfa i gomologicheskie kharakteristiki funktsionalov”, Matem. sb., 192:1 (2001), 51–66 | MR | Zbl
[9] Klimov B.C., “Beskonechnomernaya versiya teorii Morsa dlya lipshitsevykh funktsionalov”, Matem. sb., 193:6 (2002), 105–122 | MR | Zbl