On a~representation of a~pencil of admissible trajectories in a~linear control problem with an impulse constraint
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2005), pp. 15-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_12_a2,
     author = {T. Yu. Kashirtseva and A. G. Chentsov},
     title = {On a~representation of a~pencil of admissible trajectories in a~linear control problem with an impulse constraint},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--27},
     publisher = {mathdoc},
     number = {12},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_12_a2/}
}
TY  - JOUR
AU  - T. Yu. Kashirtseva
AU  - A. G. Chentsov
TI  - On a~representation of a~pencil of admissible trajectories in a~linear control problem with an impulse constraint
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 15
EP  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_12_a2/
LA  - ru
ID  - IVM_2005_12_a2
ER  - 
%0 Journal Article
%A T. Yu. Kashirtseva
%A A. G. Chentsov
%T On a~representation of a~pencil of admissible trajectories in a~linear control problem with an impulse constraint
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 15-27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_12_a2/
%G ru
%F IVM_2005_12_a2
T. Yu. Kashirtseva; A. G. Chentsov. On a~representation of a~pencil of admissible trajectories in a~linear control problem with an impulse constraint. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2005), pp. 15-27. http://geodesic.mathdoc.fr/item/IVM_2005_12_a2/

[1] Chentsov A.G., “K voprosu o postroenii korrektnykh rasshirenii v klasse konechno-additivnykh mer”, Izv. vuzov. Matematika, 2002, no. 2, 58–80 | MR | Zbl

[2] Samoilenko A.M., Perestnyuk N.A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987, 287 pp. | MR

[3] Miller B.M., “Zadacha nelineinogo impulsnogo upravleniya ob'ektami, opisyvaemymi obyknovennymi differentsialnymi uravneniyami”, Avtomatika i telemekhanika, 1987, no. 3, 34–41

[4] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[5] Zavalischin S.T., Sesekin A.N., Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR | Zbl

[6] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971, 309 pp. | MR

[7] Dykhta V.A., Samsonyuk O.N., Optimalnye impulsnye upravleniya s prilozheniyami, Fizmatlit, M., 2000, 255 pp. | MR | Zbl

[8] Chentsov A.G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, Nauka, Ekaterinburg, 1993, 232 pp.

[9] Chentsov A.G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York, London, Moscow, 1996, 244 pp. | MR | Zbl

[10] Chentsov A.G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht-Boston-London, 1997, 322 pp. | MR | Zbl

[11] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[12] Berdyshev Yu.I., Chentsov A.G., “Ob ekvivalentnosti regulyarizatsii v abstraktnykh zadachakh s razlichnymi klassami dopustimykh upravlenii”, Kibernetika i sistemnyi analiz, 1998, no. 3, 71–80 | MR | Zbl

[13] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1965, 322 pp. | MR | Zbl

[14] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[15] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[16] Kelli Dzh., Obschaya topologiya, Nauka, M., 1981, 431 pp.

[17] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[18] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[19] Chentsov A.G., “Universalnaya asimptoticheskaya realizatsiya integralnykh ogranichenii i konstruktsii rasshireniya v klasse konechno-additivnykh mer”, Tr. IMM UrO RAN, 5, 1998, 328–356