Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_11_a7, author = {G. A. Sviridyuk and V. V. Shemetova}, title = {The phase space of a nonclassical model}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {47--52}, publisher = {mathdoc}, number = {11}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_11_a7/} }
G. A. Sviridyuk; V. V. Shemetova. The phase space of a nonclassical model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2005), pp. 47-52. http://geodesic.mathdoc.fr/item/IVM_2005_11_a7/
[1] Oskolkov A.P., Kotsiolis A.A., Schadiev R.D., “Nelokalnye zadachi dlya odnogo klassa nelineinykh dissipativnykh uravnenii tipa S.L.Soboleva”, Zap. nauch. seminarov LOMI, 199, 1992, 91–113 | Zbl
[2] Oskolkov A.P., “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S.L. Soboleva”, Zap. nauch. seminarov LOMI, 198, 1991, 31–48 | Zbl
[3] Benjamin T.B., Bona J.L., Mahony J.J., “Model equations for long waves in nonlinear dispersive systems”, Phil. Trans. R. Soc. Lond. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl
[4] von Below J., “A maximum principle for semilinear parabolic network equations”, Lect. Notes in Pure and Appl. Math., 133, 1991, 37–45 | MR | Zbl
[5] Penkin O.M., Pokornyi Yu.V., “O nekotorykh kachestvennykh svoistvakh uravnenii na odnomernom kletochnom komplekse”, Matem. zametki, 59:5 (1996), 777–780 | MR | Zbl
[6] Yanagida E., “Stability of nonconstant steady states in reaction–diffusion systems on graphs”, Japan J. Induct. Appl. Math., 18 (2001), 25–42 | MR | Zbl
[7] Shafarevich A.I., “Differentsialnye uravneniya na grafakh, opisyvayuschie asimptoticheskie resheniya uravnenii Nave–Stoksa, sosredotochennye v maloi okrestnosti krivoi”, Differents. uravneniya, 34:8 (1998), 1119–1130 | MR | Zbl
[8] Sviridyuk G.A., “Uravneniya sobolevskogo tipa na grafakh”, Neklassich. uravn. matem. fiz., IM SO RAN, Novosibirsk, 2002, 221–225 | Zbl
[9] Demidenko G.V., Uspenskii S.V., Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York, 2003, 490 pp. | MR | Zbl
[10] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York, 1999, 283 pp. | MR | Zbl
[11] Egorov I.E., Pyatkov S.G., Popov S.V., Neklassicheskie operatorno-differentsialnye uravneniya, Nauka, Novosibirsk, 2000, 336 pp. | MR
[12] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt method in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrecht Harbour, 2002, 548 pp. | MR | Zbl
[13] Sviridyuk G.A., Fedorov V.E., Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003, 179 pp. | MR | Zbl
[14] Sviridyuk G.A., Trineeva I.K., “Sborka Uitni fazovogo prostranstva uravneniya Khoffa”, Izv. vuzov. Matematika, 2005, no. 10, 54–60 | MR
[15] Sviridyuk G.A., “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Cer. matem., 57:3 (1993), 192–207 | Zbl
[16] Sviridyuk G.A., Ankudinov A.V., “Fazovoe prostranstvo zadachi Koshi–Dirikhle dlya odnogo neklassicheskogo uravneniya”, Differents. uravneniya, 39:11 (2003), 1556–1561 | MR | Zbl
[17] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Platon, Volgograd, 1997, 203 pp.