The entropy maximum principle in the structural identification of dynamical systems: an analytic approach
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2005), pp. 16-24

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_11_a2,
     author = {A. V. Daneev and V. A. Rusanov and D. Yu. Sharpinskii},
     title = {The entropy maximum principle in the structural identification of dynamical systems: an analytic approach},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--24},
     publisher = {mathdoc},
     number = {11},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/}
}
TY  - JOUR
AU  - A. V. Daneev
AU  - V. A. Rusanov
AU  - D. Yu. Sharpinskii
TI  - The entropy maximum principle in the structural identification of dynamical systems: an analytic approach
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 16
EP  - 24
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/
LA  - ru
ID  - IVM_2005_11_a2
ER  - 
%0 Journal Article
%A A. V. Daneev
%A V. A. Rusanov
%A D. Yu. Sharpinskii
%T The entropy maximum principle in the structural identification of dynamical systems: an analytic approach
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 16-24
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/
%G ru
%F IVM_2005_11_a2
A. V. Daneev; V. A. Rusanov; D. Yu. Sharpinskii. The entropy maximum principle in the structural identification of dynamical systems: an analytic approach. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2005), pp. 16-24. http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/