Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_11_a2, author = {A. V. Daneev and V. A. Rusanov and D. Yu. Sharpinskii}, title = {The entropy maximum principle in the structural identification of dynamical systems: an analytic approach}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--24}, publisher = {mathdoc}, number = {11}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/} }
TY - JOUR AU - A. V. Daneev AU - V. A. Rusanov AU - D. Yu. Sharpinskii TI - The entropy maximum principle in the structural identification of dynamical systems: an analytic approach JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 16 EP - 24 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/ LA - ru ID - IVM_2005_11_a2 ER -
%0 Journal Article %A A. V. Daneev %A V. A. Rusanov %A D. Yu. Sharpinskii %T The entropy maximum principle in the structural identification of dynamical systems: an analytic approach %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2005 %P 16-24 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/ %G ru %F IVM_2005_11_a2
A. V. Daneev; V. A. Rusanov; D. Yu. Sharpinskii. The entropy maximum principle in the structural identification of dynamical systems: an analytic approach. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2005), pp. 16-24. http://geodesic.mathdoc.fr/item/IVM_2005_11_a2/
[1] Panchenkov A.H., Entropiya, Intelcervic, Hizh. Hovgorod, 1999, 589 pp.
[2] Panchenkov A.H., Entropiya, T. 2, Intelcervic, Hizh. Hovgorod, 2002, 712 pp.
[3] Lyung L., Identifikatsiya cictem. Teoriya dlya polzovatelya, Hauka, M., 1991, 432 pp. | MR
[4] Kalman P., Falb P., Arbib M., Ocherki po matematicheckoi teorii cictem, Mir, M., 1971, 400 pp. | Zbl
[5] Mecarovich M., Takaxara Ya., Obschaya teoriya cictem: matematicheckie ocnovy, Mir, M., 1978, 312 pp.
[6] Daneev A.B., Pucanov B.A., “Ob odnoi teoreme cuschectvovaniya cilnoi modeli”, Avtomatika i telemexanika, 1995, no. 8, 64–73 | MR | Zbl
[7] Daneev A.B., Pucanov B.A., “Geometricheckie xarakterictiki cvoictv cuschectvovaniya konechnomernyx $(A,B)$-modelei v zadachax ctrukturno-parametricheckoi identifikatsii”, Avtomatika i telemexanika, 1999, no. 1, 3–8 | MR | Zbl
[8] Daneev A.B., Pucanov B.A., “Poryadkovye xarakterictiki cvoictv cuschectvovaniya cilnyx lineinyx konechnomernyx differentsialnyx modelei”, Differents. uravneniya, 35:1 (1999), 43–50 | MR | Zbl
[9] Daneev A.B., Pucanov B.A., “Ob odnom klacce cilnyx differentsialnyx modelei nad cchetnym mnozhectvom dinamicheckix protseccov konechnogo xaraktera”, Izv. vuzov. Matematika, 2000, no. 2, 32–40 | MR | Zbl
[10] Matrocov B.M., Anapolckii L.Yu., Bacilev S.H., Metod cravneniya v matematicheckoi teorii cictem, Hauka, Hovocibirck, 1980, 481 pp.
[11] Daneev A.B., Pucanov B.A., “K akciomaticheckoi teorii identifikatsii dinamicheckix cictem, I. Ocnovnye ctruktury”, Avtomatika i telemexanika, 1994, no. 8, 126–136 | MR | Zbl
[12] Billemc Ya., “Ot vremennogo ryada k lineinoi cicteme”, Teoriya cictem. Matematicheckie metody i modelirovanie, eds. A.H. Kolmogorov, S.P. Hovikov, Mir, M., 1989, 8–191
[13] Burbaki H., Teoriya mnozhectv, Mir, M., 1965, 455 pp.
[14] Engelking P., Obschaya topologiya, Hauka, M., 1986, 752 pp.
[15] Daneev A.B., Lakeev A.B., Pucanov B.A., Pucanov M.B., “K teorii realizatsii cilnyx differentsialnyx modelei, I”, Sib. zhurn. inductrialnoi matem., 2005, no. 1, 53–63 | MR
[16] Khorn P., Dzhoncon Ch., Matrichnyi analiz, Mir, M., 1989, 656 pp. | MR | Zbl
[17] Iocida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp.
[18] Bacilev S.H., Zherlov A.K., Fedocov E.A., Fedunov B.E., Intellektnoe upravlenie dinamicheckimi cictemami, Fizmatlit, M., 2000, 352 pp.
[19] Kantorovich L.B., Akilov G.P., Funktsionalnyi analiz, Hauka, M., 1977, 442 pp. | MR