The structure of second-order periodic matrix functions having a determinant identically equal to one
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2005), pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_10_a4,
     author = {Yu. Ya. Isaenko},
     title = {The structure of second-order periodic matrix functions having a determinant identically equal to one},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--53},
     publisher = {mathdoc},
     number = {10},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2005_10_a4/}
}
TY  - JOUR
AU  - Yu. Ya. Isaenko
TI  - The structure of second-order periodic matrix functions having a determinant identically equal to one
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 47
EP  - 53
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2005_10_a4/
LA  - ru
ID  - IVM_2005_10_a4
ER  - 
%0 Journal Article
%A Yu. Ya. Isaenko
%T The structure of second-order periodic matrix functions having a determinant identically equal to one
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 47-53
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2005_10_a4/
%G ru
%F IVM_2005_10_a4
Yu. Ya. Isaenko. The structure of second-order periodic matrix functions having a determinant identically equal to one. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2005), pp. 47-53. http://geodesic.mathdoc.fr/item/IVM_2005_10_a4/

[1] Yakubovich V.A., Starzhinskii V.M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 718 pp. | MR

[2] Floquet G., “Sur les equations differentielles lineaires a coefficients periodiques”, Ann. de l'Ecole Normale, 2-e serie, 12 (1883), 47–88 | MR

[3] Lyapunov A.M., Obschaya zadacha ob ustoichivosti dvizheniya, Sobranie sochinenii. T. 2, GITTL, M.–L., 1956, 472 pp.

[4] Isaenko Yu.Ya., “Ob odnom klasse lineinykh periodicheskikh differentsialnykh uravnenii na ploskosti, integriruemykh v konechnom vide”, Differents. i integraln. uravneniya, Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii, Chelyabinsk, 1999, 55