@article{IVM_2004_9_a9,
author = {V. M. Deundyak},
title = {Application of {Nikol'skii} ideals to the investigation of the solvability of bisingular integral operators},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {85--87},
year = {2004},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a9/}
}
TY - JOUR AU - V. M. Deundyak TI - Application of Nikol'skii ideals to the investigation of the solvability of bisingular integral operators JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 85 EP - 87 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2004_9_a9/ LA - ru ID - IVM_2004_9_a9 ER -
V. M. Deundyak. Application of Nikol'skii ideals to the investigation of the solvability of bisingular integral operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 85-87. http://geodesic.mathdoc.fr/item/IVM_2004_9_a9/
[1] Nikolskii N. K., Operatory Gankelya i Tëplitsa. Algebraicheskii podkhod, Preprint P-2-82, LOMI AN SSSR, 1982
[2] Georgiev K. A., Deundyak V. M., “Idealy Nikolskogo i ikh primenenie k issledovaniyu algebr singulyarnykh integralnykh operatorov”, Algebra i analiz, 11:2 (1999), 88–108 | MR | Zbl
[3] Pilidi B. C., “O bisingulyarnom uravnenii v prostranstve $L_p$”, Matem. issledovaniya, 7, no. 3, Shtiintsa, Kishinev, 1972, 167–175 | MR
[4] Douglas R. G., Howe R., “On the $C^*$-algebra of Toeplitz operators on the quarter-plane”, Trans. Amer. Math. Soc., 158:1 (1972), 203–218 | DOI | MR
[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 470 pp. | MR | Zbl
[6] Mikhlin S. G., “Singulyarnye integralnye uravneniya”, UMN, 3:3 (1948), 29–112 | MR
[7] Georgiev K. A., Deundyak V. M., “Kriterii prinadlezhnosti vzveshennogo singulyarnogo operatora Koshi algebre singulyarnykh integralnykh operatorov s koeffitsientami iz algebr Sarasona”, Funkts. analiz i ego prilozh., 28:3 (1994), 80–82 | MR | Zbl
[8] Deundyak V. M., Georgiev K. A., “An outer derivation construction on the algebra of singular integral operators with general coefficients in weighted spaces and its applications”, Operator Theory: Advances and Appl., 118 (2000), 91–103, Birkhäuser, Basel | MR