@article{IVM_2004_9_a4,
author = {L. P. Lebedev and A. B. Neimark},
title = {An existence theorem for a shallow nonlinear shell with an obstacle},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {41--45},
year = {2004},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a4/}
}
L. P. Lebedev; A. B. Neimark. An existence theorem for a shallow nonlinear shell with an obstacle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 41-45. http://geodesic.mathdoc.fr/item/IVM_2004_9_a4/
[1] Khludnev A. M., “Suschestvovanie i regulyarnost resheniya odnostoronnikh kraevykh zadach lineinoi teorii pologikh obolochek”, Differents. uravneniya, 20:11 (1984), 1968–1975 | MR | Zbl
[2] Lvov G. I., “Variatsionnaya postanovka kontaktnoi zadachi dlya lineinouprugikh i fizicheski nelineinykh pologikh obolochek”, PMM, 46:5 (1982), 841–846 | MR
[3] Vorovich I. I., Nonlinear theory of shallow shells, Springer-Verlag, 1999, 390 pp. | MR | Zbl
[4] Vorovich I. I., Lebedev L. P., “O suschestvovanii reshenii v nelineinoi teorii pologikh obolochek”, PMM, 36:4 (1972), 691–704 | MR | Zbl
[5] Vorovich I. I., Lebedev L. P., “O razreshimosti nelineinoi zadachi ravnovesiya pologoi obolochki”, PMM, 52:5 (1988), 814–820 | MR | Zbl
[6] Vlasov V. Z., Obschaya teoriya obolochek i ee prilozhenie v tekhnike, Gostekhizdat, M.–L., 1949, 784 pp. | MR
[7] Lebedev L. P., Vorovich I. I., Gladwell G. M. L., Functional analysis; Applications in mechanics and inverse problems, Kluwer Acad. Publ., 1996, 248 pp. | MR | Zbl
[8] Lebedev L. P., “O ravnovesii svobodnoi nelineinoi plastiny”, PMM, 44:1 (1980), 161–165 | MR | Zbl
[9] Vorovich I. I., Lebedev L. P., Funktsionalnyi analiz, Vuzovskaya kniga, M., 2000, 320 pp.