On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 24-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_9_a3,
     author = {V. T. Dmitrienko and V. G. Zvyagin},
     title = {On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--40},
     publisher = {mathdoc},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/}
}
TY  - JOUR
AU  - V. T. Dmitrienko
AU  - V. G. Zvyagin
TI  - On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 24
EP  - 40
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/
LA  - ru
ID  - IVM_2004_9_a3
ER  - 
%0 Journal Article
%A V. T. Dmitrienko
%A V. G. Zvyagin
%T On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 24-40
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/
%G ru
%F IVM_2004_9_a3
V. T. Dmitrienko; V. G. Zvyagin. On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 24-40. http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/

[1] Agranovich Yu. Ya., Sobolevskii P. E., “Motion of nonlinear visco-elastic fluid”, Nonlinear Analysis, Theory, Methods and Appl., 32:6 (1998), 755–760 | DOI | MR | Zbl

[2] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya uravnenii dvizheniya vyazkouprugoi zhidkosti”, Dokl. PAN, 380:3 (2001), 308–311 | MR | Zbl

[3] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl

[4] Dmitrienko V. T., Zvyagin V. G., “Topological degree method in the equations of the Navier–Stokes type”, Abstract and Appl. Anal., 1997, no. 1–2, 1–45 | DOI | MR | Zbl

[5] Orlov V. P., Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory”, Different. and Integral Equat., 4:1 (1991), 103–115 | MR | Zbl

[6] Litvinov W. G., A model and general problem on plastic flow under deformations, 99/7, Universität Stuttgart, Bericht, 1999, 31 pp.

[7] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987, 408 pp. | MR

[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR

[9] Bukkenbakh E., Bellman R., Neravenstva, Mir, M., 1965, 276 pp. | MR

[10] Vishik M. I., Fursikov A. V., Matematicheskie modeli statisticheskoi gidromekhaniki, Nauka, M., 1980, 440 pp. | MR

[11] Solonnikov V. A., “Otsenki tenzorov Grina dlya nekotorykh granichnykh zadach”, DAN SSSR, 130:5 (1960), 988–991 | MR | Zbl

[12] Akhmerov R. R., Kamenskii M. I., Potapov A. S. i dr., Mery nekompaktnosti i uplotnyayuschie operatory, Nauka, Novosibirsk, 1986, 264 pp. | Zbl

[13] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl

[14] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR

[15] Filatov A. N., Sharova L. V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 152 pp. | MR | Zbl