Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_9_a3, author = {V. T. Dmitrienko and V. G. Zvyagin}, title = {On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {24--40}, publisher = {mathdoc}, number = {9}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/} }
TY - JOUR AU - V. T. Dmitrienko AU - V. G. Zvyagin TI - On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 24 EP - 40 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/ LA - ru ID - IVM_2004_9_a3 ER -
%0 Journal Article %A V. T. Dmitrienko %A V. G. Zvyagin %T On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 24-40 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/ %G ru %F IVM_2004_9_a3
V. T. Dmitrienko; V. G. Zvyagin. On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 24-40. http://geodesic.mathdoc.fr/item/IVM_2004_9_a3/
[1] Agranovich Yu. Ya., Sobolevskii P. E., “Motion of nonlinear visco-elastic fluid”, Nonlinear Analysis, Theory, Methods and Appl., 32:6 (1998), 755–760 | DOI | MR | Zbl
[2] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya uravnenii dvizheniya vyazkouprugoi zhidkosti”, Dokl. PAN, 380:3 (2001), 308–311 | MR | Zbl
[3] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl
[4] Dmitrienko V. T., Zvyagin V. G., “Topological degree method in the equations of the Navier–Stokes type”, Abstract and Appl. Anal., 1997, no. 1–2, 1–45 | DOI | MR | Zbl
[5] Orlov V. P., Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory”, Different. and Integral Equat., 4:1 (1991), 103–115 | MR | Zbl
[6] Litvinov W. G., A model and general problem on plastic flow under deformations, 99/7, Universität Stuttgart, Bericht, 1999, 31 pp.
[7] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987, 408 pp. | MR
[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR
[9] Bukkenbakh E., Bellman R., Neravenstva, Mir, M., 1965, 276 pp. | MR
[10] Vishik M. I., Fursikov A. V., Matematicheskie modeli statisticheskoi gidromekhaniki, Nauka, M., 1980, 440 pp. | MR
[11] Solonnikov V. A., “Otsenki tenzorov Grina dlya nekotorykh granichnykh zadach”, DAN SSSR, 130:5 (1960), 988–991 | MR | Zbl
[12] Akhmerov R. R., Kamenskii M. I., Potapov A. S. i dr., Mery nekompaktnosti i uplotnyayuschie operatory, Nauka, Novosibirsk, 1986, 264 pp. | Zbl
[13] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl
[14] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR
[15] Filatov A. N., Sharova L. V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 152 pp. | MR | Zbl