On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_9_a1,
     author = {D. A. Vorotnikov},
     title = {On the existence of weak stationary solutions of a boundary value problem in the {Jeffreys} model of the motion of a viscoelastic medium},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--17},
     publisher = {mathdoc},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a1/}
}
TY  - JOUR
AU  - D. A. Vorotnikov
TI  - On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 13
EP  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_9_a1/
LA  - ru
ID  - IVM_2004_9_a1
ER  - 
%0 Journal Article
%A D. A. Vorotnikov
%T On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 13-17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_9_a1/
%G ru
%F IVM_2004_9_a1
D. A. Vorotnikov. On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 13-17. http://geodesic.mathdoc.fr/item/IVM_2004_9_a1/

[1] Dyarmati I., Neravnovesnaya termodinamika, Mir, M., 1974, 304 pp.

[2] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 376 pp. | MR | Zbl

[3] Oldroit Dzh. G., “Nenyutonovskoe techenie zhidkostei i tverdykh tel”, Reologiya: teoriya i prilozheniya, In. lit., M., 1962, 757–793

[4] Reiner M., Reologiya, Fizmatgiz, M., 1965, 224 pp.

[5] Guillopé C., Saut J. C., “Mathematical problems arising in differential models for viscoelastic fluids”, Mathematical Topics in Fluid Mechanics, eds. J. F. Rodrigues, A. Sequeira, Harlow, Longman, 1993, 64–93 | MR

[6] Agranovich Yu. Ya., Sobolevskii P. E., “Dvizhenie nelineinoi vyazkouprugoi zhidkosti”, DAN CSSR, 314:3 (1990), 521–525 | MR | Zbl

[7] Kotsiolis A. A., Oskolkov A. P., “O razreshimosti osnovnoi nachalno-kraevoi zadachi dlya uravnenii dvizheniya zhidkosti Oldroita na $(0,\infty)$ i povedenii ee reshenii pri $t\to+\infty$”, Zap. nauchn. semin. LOMI AN SSSR, 150, 1986, 48–52 | Zbl

[8] Dmitrienko V. T., Zvyagin V. G., “The topological degree method for equations of the Navier–Stokes type”, Abstract and Appl. Anal, 1, 2 (1997), 1–45 | DOI | MR | Zbl

[9] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl

[10] Renardy M., “Existence of slow steady flows of viscoelastic fluids with differential constitutive equations”, Z. angew. Math. und Mech., 65:9 (1985), 449–451 | DOI | MR | Zbl

[11] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl

[12] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961, 204 pp.