Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_9_a0, author = {D. A. Abrukov}, title = {Completeness of the fundamental object of a surface that does not belong to the absolute of a projective-metric space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {9}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a0/} }
TY - JOUR AU - D. A. Abrukov TI - Completeness of the fundamental object of a surface that does not belong to the absolute of a projective-metric space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 3 EP - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_9_a0/ LA - ru ID - IVM_2004_9_a0 ER -
%0 Journal Article %A D. A. Abrukov %T Completeness of the fundamental object of a surface that does not belong to the absolute of a projective-metric space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 3-12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_9_a0/ %G ru %F IVM_2004_9_a0
D. A. Abrukov. Completeness of the fundamental object of a surface that does not belong to the absolute of a projective-metric space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2004_9_a0/
[1] Stolyarov A. V., Dvoistvennaya teoriya osnaschennykh mnogoobrazii, Cheboksary, 1994, 290 pp. | MR
[2] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR
[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR | Zbl
[4] Stolyarov A. V., “Vnutrennyaya geometriya proektivno-metricheskogo prostranstva”, Differents. geometriya mnogoobrazii figur, 32, Izd-vo Kaliningr. un-ta, 2001, 94–101 | MR
[5] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Matem. o-va, 2, M., 1953, 275–382 | MR | Zbl
[6] Laptev G. F., Ostianu N. M., “Raspredeleniya $m$-mernykh lineinykh elementov v prostranstve proektivnoi svyaznosti. I”, Tr. Geometrich. semin., 3 (1971), 49–94, VINITI | MR
[7] Stolyarov A. V., “Proektivno-differentsialnaya geometriya regulyarnogo giperpolosnogo raspredeleniya $m$-mernykh lineinykh elementov”, Itogi nauki i tekhniki. Probl. geometrii, 7, VINITI, M., 1975, 117–151
[8] Ostianu N. M., “O kanonizatsii podvizhnogo repera pogruzhennogo mnogoobraziya”, Rev. math. pures et appl., 7:2 (1962), 231–240 | MR | Zbl
[9] Laptev G. F., “Differentsialnaya geometriya mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Geometriya, VINITI, M., 1965, 5–64 | MR
[10] Ostianu N. M., “Raspredeleniya $m$-mernykh lineinykh elementov v prostranstve proektivnoi svyaznosti. II”, Tr. Geometrich. semin., 3 (1971), 95–114, VINITI | MR
[11] Vagner V. V., “Teoriya polya lokalnykh giperpolos”, Tr. semin. po vektorn. i tenzorn. analizu, 8, Izd-vo MGU, M, 1950, 197–272 | MR
[12] Stolyarov A. V., “Prilozhenie teorii regulyarnykh giperpolos k izucheniyu geometrii mnogomernykh poverkhnostei proektivnogo prostranstva”, Izv. vuzov. Matematika, 1976, no. 2, 111–113 | Zbl
[13] Stolyarov A. V., “O fundamentalnykh ob'ektakh regulyarnoi giperpolosy”, Izv. vuzov. Matematika, 1975, no. 10, 97–99 | Zbl
[14] Chakmazyan A. V., “Dvoistvennaya normalizatsiya”, Dokl. AN ArmSSR, 28:4 (1959), 151–157 | Zbl
[15] Cartan E., “Les espaces á connexion projective”, Tr. semin. po vektorn. i tenzorn. analizu, 4, Izd-vo MGU, M., 1937, 147–159
[16] Ostianu N. M., “O geometrii mnogomernoi poverkhnosti proektivnogo prostranstva”, Tr. Geometrich. semin., 1966, no. 1, 239–263, VINITI | MR | Zbl
[17] Stolyarov A. V., “O vnutrennei geometrii poverkhnosti Kartana”, Differents. geometriya mnogoobrazii figur, 7, Izd-vo Kaliningr. un-ta, 1976, 111–118
[18] Stolyarov A. V., “Uslovie kvadratichnosti regulyarnoi giperpolosy”, Izv. vuzov. Matematika, 1975, no. 11, 106–108 | Zbl