Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_8_a4, author = {S. R. Nasyrov}, title = {Riemann surfaces bounded by curves with given projections of branch points}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {48--61}, publisher = {mathdoc}, number = {8}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_8_a4/} }
S. R. Nasyrov. Riemann surfaces bounded by curves with given projections of branch points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2004), pp. 48-61. http://geodesic.mathdoc.fr/item/IVM_2004_8_a4/
[1] Nasyrov S. R., “Razvetvlennye nakrytiya rimanovykh poverkhnostei s zadannoi proektsiei kraya”, Algebra i analiz, 5:3 (1993), 212–237 | MR | Zbl
[2] Nasyrov S. R., “Generalized Riemann–Hurwitz formula”, Rev. Romain Acad. Sci., 40:2 (1995), 177–194 | MR | Zbl
[3] Culler M., “Using surfaces to solve equations in free groups”, Topology, 20 (1981), 133–145 | DOI | MR | Zbl
[4] Olshanskii A. Yu., “Diagrammy gomomorfizmov grupp poverkhnostei”, Sib. matem. zhurn., 30:6 (1989), 152–171 | MR
[5] Maltsev A. I., “Ob uravnenii $zxyx^{-1}y^{-1}z^{-1}=aba^{-1}b^{-1}$ v svobodnoi gruppe”, Algebra i logika, 1:5 (1962), 45–50 | MR
[6] Nasyrov S. R., “Postroenie konechnykh rimanovykh poverkhnostei po granichnoi krivoi”, DAN SSSR, 297:6 (1987), 1311–1314 | MR
[7] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980, 447 pp. | MR