Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_7_a3, author = {A. M. Elizarov and A. V. Lapin}, title = {Application of variational methods in inverse boundary value problems for analytic functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {30--46}, publisher = {mathdoc}, number = {7}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_7_a3/} }
TY - JOUR AU - A. M. Elizarov AU - A. V. Lapin TI - Application of variational methods in inverse boundary value problems for analytic functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 30 EP - 46 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_7_a3/ LA - ru ID - IVM_2004_7_a3 ER -
%0 Journal Article %A A. M. Elizarov %A A. V. Lapin %T Application of variational methods in inverse boundary value problems for analytic functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 30-46 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_7_a3/ %G ru %F IVM_2004_7_a3
A. M. Elizarov; A. V. Lapin. Application of variational methods in inverse boundary value problems for analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2004), pp. 30-46. http://geodesic.mathdoc.fr/item/IVM_2004_7_a3/
[1] Aksentev L. A., Zhurbenko L. N., “Voprosy korrektnosti v obratnykh kraevykh zadachakh”, Tr. semin. po kraevym zadacham, 16, Izd-vo Kazansk. un-ta, Kazan, 1979, 15–28 | MR
[2] Elizarov A. M., “O kvaziresheniyakh vneshnei obratnoi kraevoi zadachi”, Izv. vuzov. Matematika, 1984, no. 10, 42–50 | MR | Zbl
[3] Elizarov A. M., Ilinskii N. B., Potashev A. V., Obratnye kraevye zadachi aerogidrodinamiki: teoriya i metody proektirovaniya i optimizatsii formy krylovykh profilei, Fizmatlit, M., 1994, 436 pp. | MR | Zbl
[4] Aksentev L. A., “Ob odnolistnoi razreshimosti obratnykh kraevykh zadach”, Tr. semin. po kraevym zadacham, 10, Izd-vo Kazansk. un-ta, Kazan, 1973, 11–24 | MR
[5] Aksentev L. A., “Ob odnolistnoi razreshimosti obratnykh kraevykh zadach”, Tr. semin. po kraevym zadacham, 11, Izd-vo Kazansk. un-ta, Kazan, 1974, 9–18 | MR
[6] Haslinger J., Neittaanmaki P., Finite element approximation for optimal shape design: theory and application, John Wiley and Sons, New York, 1988, 335 pp. | MR | Zbl
[7] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 576 pp. | MR
[8] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, M., Radio i svyaz, 1987, 400 pp. | MR
[9] Elizarov A. M., Fokin D. A., “Variatsionnye obratnye kraevye zadachi aerogidrodinamiki”, Dokl. RAN, 377:6 (2001), 758–763 | MR
[10] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Stythoff Noordhoff, 1976, 352 pp. | MR
[11] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR
[12] Gabay D., “Application of the method of multipliers to variational inequalities”, Augmented Lagrangian Methods, Applications to the numerical solution of boundary value problems, North Holland, Amsterdam, 1983, 299–331
[13] Lions P. L., Mercier B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | MR | Zbl