New isoperimetric inequalities for moments of domains and torsional rigidity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2004), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_7_a0,
     author = {F. G. Avkhadiev},
     title = {New isoperimetric inequalities for moments of domains and torsional rigidity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {7},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_7_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - New isoperimetric inequalities for moments of domains and torsional rigidity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 3
EP  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_7_a0/
LA  - ru
ID  - IVM_2004_7_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T New isoperimetric inequalities for moments of domains and torsional rigidity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 3-11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_7_a0/
%G ru
%F IVM_2004_7_a0
F. G. Avkhadiev. New isoperimetric inequalities for moments of domains and torsional rigidity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2004), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2004_7_a0/

[1] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, GIFML, M., 1962, 336 pp. | MR

[2] Bandle C., Isoperimetric inequalities and applications, Pitman, Boston, 1980, 228 pp. | MR | Zbl

[3] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazansk. fond “Matematika”, Kazan, 1996, 216 pp. | MR | Zbl

[4] Avkhadiev F. G., “Variatsionnye konformno-invariantnye neravenstva i ikh prilozheniya”, DAN SSSR, 359:6 (1998), 727–730 | MR | Zbl

[5] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl

[6] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | DOI | MR | Zbl

[7] Timoshenko S. R., History of the strength of materials, McGraw-Hill, London, 1954, 452 pp. | MR | Zbl

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[9] Avkhadiev F. G., “Geometricheskie kharakteristiki oblastei, ekvivalentnye normam nekotorykh operatorov vlozheniya”, Materialy mezhdunar. konf. i Chebyshevskikh chtenii, posvyasch. 175-letiyu so dnya rozhd. P. L. Chebysheva, t. 1, MGU, Moskva, 1996, 12–14

[10] Salahudinov R. G., “Isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequalities and Appl, 6 (2001), 253–260 | DOI | MR | Zbl

[11] Bañuelos M., Berg M. Van Den, Carrol T., “Torsional rigidity and expected lifetime of Brownnian motion”, J. London Math. Soc., 66:2 (2002), 499–512 | DOI | MR

[12] Kohler-Jobin M.-Th., “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, J. Appl. Math. and Phys., 32 (1981), 625–646 | DOI | MR | Zbl

[13] Bandle C., Fluger M., “Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U=U^{(n+2)/(n-2)}$”, SIAM Rev., 38:2 (1996), 191–238 | DOI | MR | Zbl

[14] Avkhadiev F. G., “Izoperimetricheskie neravenstva dlya zhestkosti krucheniya i konformnykh momentov oblastei”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Kazan, 2002, 12–16

[15] Avkhadiev F. G., Kayumov I. R., “Comparison theorems of isoperimetric type for moments of compact set”, Collectanea Math., 55:1 (2004), 1–9 | MR | Zbl