On a class of solutions of a Volterra equation of the second kind with a regular singularity in a Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2004), pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_6_a6,
     author = {I. V. Sapronov},
     title = {On a class of solutions of a {Volterra} equation of the second kind with a regular singularity in a {Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--58},
     publisher = {mathdoc},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_6_a6/}
}
TY  - JOUR
AU  - I. V. Sapronov
TI  - On a class of solutions of a Volterra equation of the second kind with a regular singularity in a Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 48
EP  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_6_a6/
LA  - ru
ID  - IVM_2004_6_a6
ER  - 
%0 Journal Article
%A I. V. Sapronov
%T On a class of solutions of a Volterra equation of the second kind with a regular singularity in a Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 48-58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_6_a6/
%G ru
%F IVM_2004_6_a6
I. V. Sapronov. On a class of solutions of a Volterra equation of the second kind with a regular singularity in a Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2004), pp. 48-58. http://geodesic.mathdoc.fr/item/IVM_2004_6_a6/

[1] Sato T., “Sur l'equation integrale $xu(x)=f(x)+\int^x_0 K(x,t,u(t))\,dt$”, J. Math. Soc. Japan, 5:2 (1953), 145–153 | MR | Zbl

[2] Takesada T., “On the singular point of integral equations of Volterra type”, J. Math. Soc. Japan, 7:2 (1955), 123–136 | MR | Zbl

[3] Panov L. I., “Ob integralnykh uravneniyakh s yadrami, imeyuschimi neintegriruemuyu osobennost proizvolnogo poryadka”, DAN TadzhSSR, 10:6 (1967), 3–7 | MR

[4] Magnitskii N. A., “O suschestvovanii mnogoparametricheskikh semeistv reshenii integralnogo uravneniya Volterra I-go roda”, DAH SSSR, 235:4 (1977), 772–774 | MR

[5] Magnitskii N. A., “Mnogoparametricheskie semeistva reshenii integralnykh uravnenii Volterra”, DAH SSSR, 240:2 (1978), 268–271 | MR

[6] Magnitskii N. A., “Lineinye integralnye uravneniya Volterra I i III roda”, Zhurn. vychisl. matem. i matem. fiz., 19:4 (1979), 970–988 | MR

[7] Krein S. G., Sapronov I. V., “O polnote sistemy reshenii integralnogo uravneniya Volterra s osobennostyu”, Dokl. RAN, 355:4 (1997), 450–452 | MR | Zbl

[8] Krein S. G., Sapronov I. V., “Ob integralnykh uravneniyakh Volterra s osobennostyami”, UMN, 50:4 (1995), 140

[9] Krein S. G., “Singular integral Volterra equations”, Abstracts. Intern. Congress of Math. (Zurich, 3–11 August), 1994, 125

[10] Krein S. G., Sapronov I. V., “One class of solutions of Volterra equation with regular singularity”, Ukr. matem. zhurn., 49:3 (1997), 424–432 | MR | Zbl