Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_6_a3, author = {V. V. Vlasov and D. A. Medvedev}, title = {On estimates for solutions of differential equations with retarded argument}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {21--29}, publisher = {mathdoc}, number = {6}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_6_a3/} }
TY - JOUR AU - V. V. Vlasov AU - D. A. Medvedev TI - On estimates for solutions of differential equations with retarded argument JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 21 EP - 29 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_6_a3/ LA - ru ID - IVM_2004_6_a3 ER -
V. V. Vlasov; D. A. Medvedev. On estimates for solutions of differential equations with retarded argument. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2004), pp. 21-29. http://geodesic.mathdoc.fr/item/IVM_2004_6_a3/
[1] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl
[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR
[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[4] Vlasov V. V., “Ob otsenkakh reshenii differentsialno–raznostnykh uravnenii neitralnogo tipa”, Izv. vuzov. Matematika, 2000, no. 4, 14–22 | MR | Zbl
[5] Vlasov V. V., “Ob odnom klasse differentsialno-raznostnykh uravnenii neitralnogo tipa”, Izv. vuzov. Matematika, 1999, no. 2, 20–29 | MR | Zbl
[6] Vlasov V. V., “O bazisnosti eksponentsialnykh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh Soboleva”, Dokl. RAN, 381:3 (2001), 302–304 | MR | Zbl
[7] Vlasov V. V., Ivanov S. A., “Otsenka reshenii uravnenii s posledeistviem v prostranstvakh Soboleva i bazis iz razdelennykh raznostei”, Matem. zametki, 72:2 (2002), 303–306 | MR | Zbl
[8] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR
[9] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtinitsa, Kishinev, 1986, 260 pp. | MR | Zbl
[10] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 455 pp. | MR
[11] Miloslavskii A. I., “Ob ustoichivosti nekotorykh klassov evolyutsionnykh uravnenii”, Sib. matem. zhurn., 26:5 (1985), 118–132 | MR | Zbl
[12] Zverkin A. M., “Razlozhenie v ryad reshenii lineinykh differentsialno-raznostnykh uravnenii. Ch. 1. Kvazipolinomy”, Tr. semin. po teorii differents. uravnenii s otklonyayusch. argumentom, 5, Un-t druzhby narodov im. P. Lumumby, M., 1965, 3–38 | MR
[13] Levin B. Ya., “O bazisakh pokazatelnykh funktsii v $L_2$”, Zap. Kharkovsk. matem. o-va, 27:4 (1961), 39–48
[14] Vlasov V. V., “Korrektnaya razreshimost odnogo klassa differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1996, no. 1, 22–35 | MR | Zbl
[15] Vlasov V. V., “O razreshimosti i otsenkakh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh Soboleva”, Tr. MIAN im. V. A. Steklova, 227, 1999, 109–121 | MR | Zbl
[16] Lunel S. V., Yakubovich D. V., “A functional model aproach to linear neutral functional differential equations”, J. Int. Equat. and Oper. Theory, 27:5 (1997), 347–378 | DOI | MR | Zbl
[17] Delfour M. C., Manitius A., “The structural operator F and its role in the theory of retarded systems. Part II”, J. Math. Anal. and Appl., 74:2 (1980), 359–381 | DOI | MR | Zbl
[18] Lunel S. V., “Series expansions and small solutions for Volterra equations of convolution type”, J. Different. Equat., 85:1 (1990), 17–53 | DOI | MR | Zbl
[19] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo, 9, Izd-vo MGU, M., 1983, 190–229 | MR
[20] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR