Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_5_a9, author = {L. {\CYRV}. Smolyakova}, title = {The structure of complete radiant manifolds modeled by modules over {Weil} algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--83}, publisher = {mathdoc}, number = {5}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_5_a9/} }
L. В. Smolyakova. The structure of complete radiant manifolds modeled by modules over Weil algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 76-83. http://geodesic.mathdoc.fr/item/IVM_2004_5_a9/
[1] Shirokov A. P., “Geometriya kasatelnykh rassloenii i prostranstva nad algebrami”, Itogi nauki i tekhn. Probl. geometrii, 12, VINITI, 1981, 61–95 | MR | Zbl
[2] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer, 1993, 434 pp. | MR
[3] Shurygin V. V., “Smooth manifolds over local algebras and Weil bundles”, J. Math. Sci., 108:2 (2002), 249–294 | DOI | MR | Zbl
[4] Vishnevskii V. V., “Mnogoobraziya nad plyuralnymi chislami i polukasatelnye struktury”, Itogi nauki i tekhn. Probl. geometrii, 20, VINITI, 1988, 35–75 | MR
[5] Mikulski W. M., “Product preserving bundle functors on fibered manifolds”, Archiv. Math., 32 (1996), 307–316 | MR | Zbl
[6] Tomáš J. V., “Natural operators transforming projectable vector fields to product preserving bundles”, Rend. Circ. Mat. Palermo. Ser. 2, 59 (1999), 181–187 | MR | Zbl
[7] Sultanov A. Ya., “Prodolzheniya tenzornykh polei i svyaznostei v rassloeniya Veilya”, Izv. vuzov. Matematika, 1999, no. 9, 64–72 | MR | Zbl
[8] Kolář I., “Affine structures on Weil bundles”, Nagoya Math. J., 158 (2000), 99–106 | MR | Zbl
[9] Muñoz J., Rodriguez J., Muriel F. J., “Weil bundles and jet spaces”, Czech. Math. J., 50:4 (2000), 721–748 | DOI | MR | Zbl
[10] Shurygin V. V., Smolyakova L. B., “An analog of the Vaisman–Molino cohomology for manifolds modelled on some types of modules over Weil algebras and its application”, Lobachevskii J. Math., 9 (2001), 55–75 | MR | Zbl
[11] Wołak R., “Normal bundles of foliations of order $r$”, Demonstratio Math., 18:4 (1985), 977–994 | MR | Zbl
[12] Pogoda Z., “Horizontal lifts and foliations”, Rend. Circ. Mat. Palermo. Ser. 2, 38:21 (1989), 279–289 | MR
[13] Shurygin V. V., “Primenenie teorii mnogoobrazii nad algebrami v transversalnoi geometrii sloenii”, Pamyati Lobachevskogo posvyaschaetsya, Vyp. 2, Izd-vo Kazansk. un-ta, 1992, 119–140 | MR
[14] Apanasov B. N., Geometriya diskretnykh grupp i mnogoobrazii, Nauka, M., 1991, 432 pp. | MR | Zbl
[15] Malakhaltsev M. A., “$(X,G)$-sloeniya”, Izv. vuzov. Matematika, 1996, no. 7, 55–65 | MR
[16] Brickell F., Clark R. S., “Integrable almost tangent structures”, J. Different. Geom., 9:4 (1974), 557–563 | MR | Zbl
[17] Duc T. V., “Structures presque-transverse”, J. Different. Geom., 14:2 (1979), 215–219 | Zbl
[18] León M. de, Méndes I., Salgado M., “Integrable $p$-almost tangent manifolds and tangent bundles of $p^1$-velocities”, Acta Math. Hung., 58:1–2 (1991), 45–54 | MR | Zbl
[19] Shurygin V. V., “Mnogoobraziya nad lokalnymi algebrami ekvivalentnye rassloeniyam strui”, Izv. vuzov. Matematika, 1992, no. 10, 68–79 | MR
[20] Goldman W., Hirsch M. W., “The radiance obstruction and parallel forms on affine manifolds”, Trans. Amer. Math. Soc., 26:2 (1984), 629–649 | DOI | MR
[21] Shurygin V. V., “O stroenii transversalno radiantnykh mnogoobrazii nad lokalnymi algebrami Veilya”, Tr. konf., posv. 90-letiyu G. F. Lapteva “Invariantnye metody issledovaniya na mnogoobraziyakh struktur geometrii, analiza i matematicheskoi fiziki”, MGU, 2001, 227–236
[22] Shurygin V. V., “Strukturnye uravneniya rassloeniya $A$-affinnykh reperov”, Izv. vuzov. Matematika, 1989, no. 12, 78–80 | MR | Zbl
[23] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, I, Nauka, M., 1981, 344 pp. | MR