Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_5_a6, author = {V. T. Lisitsa}, title = {Multidimensional surfaces with a flat normal connection with constant curvature of the {Grassmann} image}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {47--51}, publisher = {mathdoc}, number = {5}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_5_a6/} }
TY - JOUR AU - V. T. Lisitsa TI - Multidimensional surfaces with a flat normal connection with constant curvature of the Grassmann image JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 47 EP - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_5_a6/ LA - ru ID - IVM_2004_5_a6 ER -
V. T. Lisitsa. Multidimensional surfaces with a flat normal connection with constant curvature of the Grassmann image. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 47-51. http://geodesic.mathdoc.fr/item/IVM_2004_5_a6/
[1] Leichtweiss K., “Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten”, Math. Z., 76:4 (1961), 334–366 | DOI | MR | Zbl
[2] Wong Y. C., “Differential geometry of Grassmann manifold”, Proc. Nat. Acad. Sci. USA, 57:3 (1967), 589–594 | DOI | MR | Zbl
[3] Wong Y. C., “Sectional curvature of Grassmann manifolds”, Proc. Nat. Acad. Sci. USA, 60:1 (1968), 75–79 | DOI | MR | Zbl
[4] Muto Y., “The Gauss map of a submanifold in a Euclidean space”, J. Math. Soc. Japan, 30:1 (1978), 85–100 | DOI | MR
[5] Borisenko A. A., Nikolaevskii Yu. A., “O poverkhnostyakh s maksimalnoi kriviznoi grassmanova obraza”, Matem. zametki, 48:3 (1990), 12–19 | MR | Zbl
[6] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Matem. sb., 111:3 (1980), 402–433 | MR | Zbl
[7] Nikolaevskii Yu. A., “O poverkhnostyakh, krivizna grassmanova obraza kotorykh ne menshe 1”, Ukr. geometrich. sb., 1990, no. 33, 77–91 | MR | Zbl
[8] Efimov N. V., Rozendorn E. R., Lineinaya algebra i mnogomernaya geometriya, Nauka, M., 1970, 528 pp. | MR