On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 41-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_5_a5,
     author = {L. A. Krukier and T. N. Subbotina},
     title = {On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--46},
     publisher = {mathdoc},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - T. N. Subbotina
TI  - On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 41
EP  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/
LA  - ru
ID  - IVM_2004_5_a5
ER  - 
%0 Journal Article
%A L. A. Krukier
%A T. N. Subbotina
%T On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 41-46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/
%G ru
%F IVM_2004_5_a5
L. A. Krukier; T. N. Subbotina. On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 41-46. http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[2] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1977, 439 pp. | MR

[3] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972, 418 pp.

[4] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, SIAM J., 3:1 (1955), 28–41 | MR | Zbl

[5] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp. | Zbl

[6] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl

[7] Gulin A. V., “Ustoichivost raznostnykh skhem i operatornye neravenstva”, Differents. uravneniya, 15:12 (1979), 2238–2250 | MR | Zbl

[8] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl

[9] Markus M., Mink Kh., Obzor po teorii matrits i matrichnyx neravenstv, Nauka, M., 1972, 232 pp. | MR

[10] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 575 pp. | MR

[11] Krukier L. A., “Matematicheskoe modelirovanie gidrodinamiki Azovskogo morya pri realizatsii proektov rekonstruktsii ego ekosistemy”, Matem. modelirovanie, 3:9 (1991), 3–20 | MR

[12] Chikina L. G., “Issledovanie skhodimosti iteratsionnogo metoda resheniya silno nesimmetrichnykh sistem v razlichnykh energeticheskikh normakh”, Sovremen. probl. matem. modelirovaniya, Sb. tr. VIII Vserossiisk. shkoly-seminara, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1999, 251–258

[13] Subbotina T. N., Krukier B. L., “Reshenie nestatsionarnogo uravneniya konvektsii-diffuzii treugolnymi kososimmetrichnymi skhemami”, Sovremen. probl. matem. modelirovaniya, Sb. tr. IX Vserossiisk. shkoly-seminara, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 2001, 324–334