Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_5_a5, author = {L. A. Krukier and T. N. Subbotina}, title = {On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {41--46}, publisher = {mathdoc}, number = {5}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/} }
TY - JOUR AU - L. A. Krukier AU - T. N. Subbotina TI - On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 41 EP - 46 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/ LA - ru ID - IVM_2004_5_a5 ER -
%0 Journal Article %A L. A. Krukier %A T. N. Subbotina %T On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 41-46 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/ %G ru %F IVM_2004_5_a5
L. A. Krukier; T. N. Subbotina. On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 41-46. http://geodesic.mathdoc.fr/item/IVM_2004_5_a5/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[2] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1977, 439 pp. | MR
[3] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972, 418 pp.
[4] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, SIAM J., 3:1 (1955), 28–41 | MR | Zbl
[5] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp. | Zbl
[6] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl
[7] Gulin A. V., “Ustoichivost raznostnykh skhem i operatornye neravenstva”, Differents. uravneniya, 15:12 (1979), 2238–2250 | MR | Zbl
[8] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl
[9] Markus M., Mink Kh., Obzor po teorii matrits i matrichnyx neravenstv, Nauka, M., 1972, 232 pp. | MR
[10] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 575 pp. | MR
[11] Krukier L. A., “Matematicheskoe modelirovanie gidrodinamiki Azovskogo morya pri realizatsii proektov rekonstruktsii ego ekosistemy”, Matem. modelirovanie, 3:9 (1991), 3–20 | MR
[12] Chikina L. G., “Issledovanie skhodimosti iteratsionnogo metoda resheniya silno nesimmetrichnykh sistem v razlichnykh energeticheskikh normakh”, Sovremen. probl. matem. modelirovaniya, Sb. tr. VIII Vserossiisk. shkoly-seminara, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1999, 251–258
[13] Subbotina T. N., Krukier B. L., “Reshenie nestatsionarnogo uravneniya konvektsii-diffuzii treugolnymi kososimmetrichnymi skhemami”, Sovremen. probl. matem. modelirovaniya, Sb. tr. IX Vserossiisk. shkoly-seminara, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 2001, 324–334