The structure of the algebra of bounded infinitely differentiable functions with compact support on the groupoid of a manifold with a foliation generated by the action of a commutative group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 37-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_5_a4,
     author = {P. N. Ivanshin},
     title = {The structure of the algebra of bounded infinitely differentiable functions with compact support on the groupoid of a manifold with a foliation generated by the action of a commutative group},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--40},
     publisher = {mathdoc},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_5_a4/}
}
TY  - JOUR
AU  - P. N. Ivanshin
TI  - The structure of the algebra of bounded infinitely differentiable functions with compact support on the groupoid of a manifold with a foliation generated by the action of a commutative group
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 37
EP  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_5_a4/
LA  - ru
ID  - IVM_2004_5_a4
ER  - 
%0 Journal Article
%A P. N. Ivanshin
%T The structure of the algebra of bounded infinitely differentiable functions with compact support on the groupoid of a manifold with a foliation generated by the action of a commutative group
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 37-40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_5_a4/
%G ru
%F IVM_2004_5_a4
P. N. Ivanshin. The structure of the algebra of bounded infinitely differentiable functions with compact support on the groupoid of a manifold with a foliation generated by the action of a commutative group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2004), pp. 37-40. http://geodesic.mathdoc.fr/item/IVM_2004_5_a4/

[1] Shapiro Ya. L., “O dvulistnoi strukture na privodimom rimanovom mnogoobrazii”, Izv. vuzov. Matematika, 1972, no. 12, 102–110 | Zbl

[2] Shapiro Ya. L., Zhukova N. I., “O globalnoi strukture privodimykh mnogoobrazii”, Izv. vuzov. Matematika, 1980, no. 10, 60–62 | MR | Zbl

[3] Shapiro Ya. L., Zhukova N. I, Igoshin V. A., “Sloeniya na nekotorykh klassakh rimanovykh mnogoobrazii”, Izv. vuzov. Matematika, 1979, no. 7, 93–96 | MR | Zbl

[4] Moore C. C., Schochet C., Global analysis on foliated spaces, Springer-Verlag, 1988, 337 pp. | MR

[5] Molino P., Riemannian foliations, Birkhäuser, Boston, 1988, 344 pp. | MR | Zbl

[6] Ehresmann C., “Les connexions infinitésimals dans un espace fibré différentiable”, Centre Belge Rech. Math. Colloq. Topologie Bruxelles, 1950, 29–55 | MR

[7] Blumenthal R. A., Hebda J. J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math. Oxford, 1984, no. 35, 383–392 | DOI | MR | Zbl

[8] Fomenko A. T., Fuks D. S., Kurs gomotopicheskoi topologii, Nauka, M., 1989, 528 pp. | MR

[9] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Regul. khaotich. dinam., Izhevsk, 2000, 400 pp.

[10] Landsman N. P., Ramazan B., Quantization of Poisson algebras associated to Lie algebroids, , 1999, 33 pp. Arxiv.org/math-ph/0001005 | MR

[11] Sherstnev A. N., Konspekt lektsii po matematicheskomu analizu, UNIPRESS, Kazan, 1998, 488 pp.

[12] Malakhaltsev M. A., “$(X,G)$-sloeniya”, Izv. vuzov. Matematika, 1996, no. 7, 55–65 | MR

[13] Zh. de Ram., Differentsiruemye mnogoobraziya, In. lit., M., 1956, 250 pp.