Convexity of a surface of normal radius and estimates for the coefficients of a mapping function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2004), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_4_a1,
     author = {L. A. Aksent'ev},
     title = {Convexity of a surface of normal radius and estimates for the coefficients of a mapping function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--15},
     publisher = {mathdoc},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/}
}
TY  - JOUR
AU  - L. A. Aksent'ev
TI  - Convexity of a surface of normal radius and estimates for the coefficients of a mapping function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 8
EP  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/
LA  - ru
ID  - IVM_2004_4_a1
ER  - 
%0 Journal Article
%A L. A. Aksent'ev
%T Convexity of a surface of normal radius and estimates for the coefficients of a mapping function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 8-15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/
%G ru
%F IVM_2004_4_a1
L. A. Aksent'ev. Convexity of a surface of normal radius and estimates for the coefficients of a mapping function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2004), pp. 8-15. http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/

[1] Avkhadiev F. G., Wirths K.-J., “Convex holes produce lower bounds for coefficients”, Complex Variables, 47:7 (2002), 553–563 | DOI | MR | Zbl

[2] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR

[3] Aksentev L. A., “O vypuklosti poverkhnosti konformnogo radiusa”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Kazan, 2002, 18–20 | MR

[4] Kovalev L .V., Privedennye moduli i teoremy iskazheniya v teorii odnolistnykh funktsii, Diss. ... kand. fiz.-matem. nauk., Vladivostok, 2000, 106 pp.

[5] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR | Zbl