Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_4_a1, author = {L. A. Aksent'ev}, title = {Convexity of a surface of normal radius and estimates for the coefficients of a mapping function}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--15}, publisher = {mathdoc}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/} }
TY - JOUR AU - L. A. Aksent'ev TI - Convexity of a surface of normal radius and estimates for the coefficients of a mapping function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 8 EP - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/ LA - ru ID - IVM_2004_4_a1 ER -
L. A. Aksent'ev. Convexity of a surface of normal radius and estimates for the coefficients of a mapping function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2004), pp. 8-15. http://geodesic.mathdoc.fr/item/IVM_2004_4_a1/
[1] Avkhadiev F. G., Wirths K.-J., “Convex holes produce lower bounds for coefficients”, Complex Variables, 47:7 (2002), 553–563 | DOI | MR | Zbl
[2] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR
[3] Aksentev L. A., “O vypuklosti poverkhnosti konformnogo radiusa”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Kazan, 2002, 18–20 | MR
[4] Kovalev L .V., Privedennye moduli i teoremy iskazheniya v teorii odnolistnykh funktsii, Diss. ... kand. fiz.-matem. nauk., Vladivostok, 2000, 106 pp.
[5] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR | Zbl