Logarithmic estimates for the rate of convergence of methods for solving the inverse Cauchy problem in a Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_3_a9,
     author = {M. Yu. Kokurin and V. V. Klyuchev},
     title = {Logarithmic estimates for the rate of convergence of methods for solving the inverse {Cauchy} problem in a {Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--75},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_3_a9/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
AU  - V. V. Klyuchev
TI  - Logarithmic estimates for the rate of convergence of methods for solving the inverse Cauchy problem in a Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 73
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_3_a9/
LA  - ru
ID  - IVM_2004_3_a9
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%A V. V. Klyuchev
%T Logarithmic estimates for the rate of convergence of methods for solving the inverse Cauchy problem in a Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 73-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_3_a9/
%G ru
%F IVM_2004_3_a9
M. Yu. Kokurin; V. V. Klyuchev. Logarithmic estimates for the rate of convergence of methods for solving the inverse Cauchy problem in a Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 73-75. http://geodesic.mathdoc.fr/item/IVM_2004_3_a9/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR

[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[3] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002, 192 pp.

[4] Hohage T., “Regularization of exponentially ill-posed problems”, Numer. Funct. Anal. and Optimization, 21:3–4 (2000), 439–464 | DOI | MR | Zbl

[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[6] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Fizmatlit, M., 1995, 176 pp. | MR