Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_3_a8, author = {L. D. \`Eskin}, title = {Equations that describe the dynamics of a {non-Newtonian} fluid with the {Reiner--Rivlin} rheological {law.~I.} {Group} analysis}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--72}, publisher = {mathdoc}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/} }
TY - JOUR AU - L. D. Èskin TI - Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 64 EP - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/ LA - ru ID - IVM_2004_3_a8 ER -
%0 Journal Article %A L. D. Èskin %T Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 64-72 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/ %G ru %F IVM_2004_3_a8
L. D. Èskin. Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 64-72. http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/
[1] CRC Handbook of Lie group analysis of differential equations, Appl. in Engineering and Physical Sci., 2, ed. Ibragimov N. H., CRC Press, London–Tokyo, 1995, 546 pp.
[2] Barenblatt G. I., “Ob avtomodelnykh dvizheniyakh szhimaemoi zhidkosti”, PMM, 16:6 (1952), 679–698 | MR | Zbl
[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR | Zbl
[4] Ovsyannikov L. V., “Programma “Podmodeli”. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl
[5] Ovsyannikov L. V., “Regulyarnye i neregulyarnye chastichno invariantnye resheniya”, Dokl. RAN, 343:2 (1995), 156–159 | MR | Zbl
[6] Ovsyannikov L. V., Chupakhin A. P., “Regulyarnye chastichno invariantnye podmodeli gazovoi dinamiki”, PMM, 60:6 (1998), 990–999 | MR
[7] Dorodnitsin V. A., Knyazeva I. V., Svirschevskii S. R., “Gruppovye svoistva uravneniya teploprovodnosti s istochnikom v dvumernom i trekhmernom sluchayakh”, Differents. uravneniya, 19:7 (1983), 1215–1223 | MR
[8] Ibragimov N. H., Torrisi M., Valenti A., “Preliminary group classification of equations $v_{tt}=f(x,v_x)v_{xx}+ g(x,v_x)$”, J. Math. Phys., 32:11 (1991), 2988–2995 | DOI | MR | Zbl
[9] Ivanov A. V., “Kvazilineinye parabolicheskie uravneniya, dopuskayuschie dvoinoe vyrozhdenie”, Algebra i analiz, 4:6 (1992), 114–130 | MR | Zbl
[10] Akhatov I. Sh. , Gazizov R. K., Ibragimov N. X., “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhn. Sovremen. probl. matem. Noveishie dostizheniya, 34, VINITI, M., 1989, 3–83 | MR | Zbl
[11] Chugunov V. A., “O gruppovykh svoistvakh uravneniya, opisyvayuschego techenie lednikov”, Izv. vuzov. Matematika, 1982, no. 10, 84–87 | MR | Zbl