Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_3_a8,
     author = {L. D. \`Eskin},
     title = {Equations that describe the dynamics of a {non-Newtonian} fluid with the {Reiner--Rivlin} rheological {law.~I.} {Group} analysis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--72},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/}
}
TY  - JOUR
AU  - L. D. Èskin
TI  - Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 64
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/
LA  - ru
ID  - IVM_2004_3_a8
ER  - 
%0 Journal Article
%A L. D. Èskin
%T Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 64-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/
%G ru
%F IVM_2004_3_a8
L. D. Èskin. Equations that describe the dynamics of a non-Newtonian fluid with the Reiner--Rivlin rheological law.~I. Group analysis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 64-72. http://geodesic.mathdoc.fr/item/IVM_2004_3_a8/

[1] CRC Handbook of Lie group analysis of differential equations, Appl. in Engineering and Physical Sci., 2, ed. Ibragimov N. H., CRC Press, London–Tokyo, 1995, 546 pp.

[2] Barenblatt G. I., “Ob avtomodelnykh dvizheniyakh szhimaemoi zhidkosti”, PMM, 16:6 (1952), 679–698 | MR | Zbl

[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR | Zbl

[4] Ovsyannikov L. V., “Programma “Podmodeli”. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl

[5] Ovsyannikov L. V., “Regulyarnye i neregulyarnye chastichno invariantnye resheniya”, Dokl. RAN, 343:2 (1995), 156–159 | MR | Zbl

[6] Ovsyannikov L. V., Chupakhin A. P., “Regulyarnye chastichno invariantnye podmodeli gazovoi dinamiki”, PMM, 60:6 (1998), 990–999 | MR

[7] Dorodnitsin V. A., Knyazeva I. V., Svirschevskii S. R., “Gruppovye svoistva uravneniya teploprovodnosti s istochnikom v dvumernom i trekhmernom sluchayakh”, Differents. uravneniya, 19:7 (1983), 1215–1223 | MR

[8] Ibragimov N. H., Torrisi M., Valenti A., “Preliminary group classification of equations $v_{tt}=f(x,v_x)v_{xx}+ g(x,v_x)$”, J. Math. Phys., 32:11 (1991), 2988–2995 | DOI | MR | Zbl

[9] Ivanov A. V., “Kvazilineinye parabolicheskie uravneniya, dopuskayuschie dvoinoe vyrozhdenie”, Algebra i analiz, 4:6 (1992), 114–130 | MR | Zbl

[10] Akhatov I. Sh. , Gazizov R. K., Ibragimov N. X., “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhn. Sovremen. probl. matem. Noveishie dostizheniya, 34, VINITI, M., 1989, 3–83 | MR | Zbl

[11] Chugunov V. A., “O gruppovykh svoistvakh uravneniya, opisyvayuschego techenie lednikov”, Izv. vuzov. Matematika, 1982, no. 10, 84–87 | MR | Zbl