A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_3_a7,
     author = {S. P. Pavlov and V. A. Krys'ko},
     title = {A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--63},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_3_a7/}
}
TY  - JOUR
AU  - S. P. Pavlov
AU  - V. A. Krys'ko
TI  - A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 57
EP  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_3_a7/
LA  - ru
ID  - IVM_2004_3_a7
ER  - 
%0 Journal Article
%A S. P. Pavlov
%A V. A. Krys'ko
%T A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 57-63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_3_a7/
%G ru
%F IVM_2004_3_a7
S. P. Pavlov; V. A. Krys'ko. A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 57-63. http://geodesic.mathdoc.fr/item/IVM_2004_3_a7/

[1] Krysko V. A., Pavlov S. P., “Ob odnom iteratsionnom metode resheniya uravnenii gibkikh pologikh obolochek”, Tr. 16-i Mezhd. konf. po teorii obolochek i plastin, Izd-vo Kazansk. un-ta, Kazan, 1996, 157–162

[2] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[3] Babuska I., Rozenzweid M. B., “A finite element scheme for domains with corners”, Numer. Math., 20 (1972), 1–21 | DOI | MR | Zbl

[4] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977, 349 pp. | MR

[5] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl