On the best error estimate for the method of averaging kernels in the problem of the differentiation of a noisy function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 76-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_3_a10,
     author = {G. G. Skorik},
     title = {On the best error estimate for the method of averaging kernels in the problem of the differentiation of a noisy function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--80},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_3_a10/}
}
TY  - JOUR
AU  - G. G. Skorik
TI  - On the best error estimate for the method of averaging kernels in the problem of the differentiation of a noisy function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 76
EP  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_3_a10/
LA  - ru
ID  - IVM_2004_3_a10
ER  - 
%0 Journal Article
%A G. G. Skorik
%T On the best error estimate for the method of averaging kernels in the problem of the differentiation of a noisy function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 76-80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_3_a10/
%G ru
%F IVM_2004_3_a10
G. G. Skorik. On the best error estimate for the method of averaging kernels in the problem of the differentiation of a noisy function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 76-80. http://geodesic.mathdoc.fr/item/IVM_2004_3_a10/

[1] Vasin V. V., “Regulyarizatsiya zadachi chislennogo differentsirovaniya”, Matem. zap. Uralsk. un-ta, 7:2 (1969), 29–33 | MR | Zbl

[2] Vasin V. V., “Ob ustoichivom vychislenii proizvodnoi v prostranstve $C(-\infty,\infty)$”, Zhurn. vychisl. matem. i matem. fiz., 13:6 (1967), 1383–1389 | MR

[3] Groetch C. W., “Optimal order of accuracy in Vasin's method for differentiation of noisy functions”, J. Optimiz. Theory. Appl., 74:2 (1992), 373–378 | DOI | MR

[4] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962, 255 pp.

[5] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl

[6] Stechkin S. B., “Naiuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | Zbl

[7] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhn., Minsk, 1987, 688 pp. | MR | Zbl

[8] Arestov V. V., “Inequalites for fractional derivatives on the half-line”, J. Approxim. Theory, 4 (1979), 19–34, PWN-Pol. Sci. Publ., Warsaw | MR

[9] Vasin V. V., Optimalnye metody vychisleniya znachenii neogranichennykh operatorov, Preprint No 77-59, In-t kibernetiki AN USSR, Kiev, 1977, 17 pp.