An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_1_a9,
     author = {S. Ya. Serovaǐskiǐ},
     title = {An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--86},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_1_a9/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 80
EP  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_1_a9/
LA  - ru
ID  - IVM_2004_1_a9
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 80-86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_1_a9/
%G ru
%F IVM_2004_1_a9
S. Ya. Serovaǐskiǐ. An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 80-86. http://geodesic.mathdoc.fr/item/IVM_2004_1_a9/

[1] Funktsionalnyi analiz, eds. S. G. Krein, Nauka, M., 1972, 544 pp. | MR

[2] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[4] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Nauk. dumka, Kiev, 1988, 284 pp. | MR

[5] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989, 280 pp. | MR | Zbl

[6] Serovaiskii S. Ya., “Optimizatsiya v nelineinykh ellipticheskikh sistemakh s upravleniem v koeffitsientakh”, Matem. zametki., 54:2 (1993), 85–95 | MR | Zbl

[7] Serovaiskii S. Ya., “Gradientnye metody v zadache optimalnogo upravleniya nelineinoi ellipticheskoi sistemoi”, Sib. matem. zhurn., 37:5 (1996), 1154–1166 | MR | Zbl

[8] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[9] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[10] Serovaiskii S. Ya., “Neobkhodimye usloviya optimalnosti v sluchae nedifferentsiruemosti funktsii sostoyaniya po upravleniyu”, Differents. uravneniya, 31:6 (1995), 1055–1059 | MR | Zbl

[11] Vasilev F. P., Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981 | MR

[12] Zolezzi T., “A characterizations of well-posed optimal control systems”, SIAM J. Control and Optim., 10:2 (1972), 594–607 | MR | Zbl

[13] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 416 pp. | MR