Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_1_a2, author = {A. S. Buldaev}, title = {Projection procedures for the nonlocal improvement of linearly controlled processes}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {18--24}, publisher = {mathdoc}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_1_a2/} }
A. S. Buldaev. Projection procedures for the nonlocal improvement of linearly controlled processes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 18-24. http://geodesic.mathdoc.fr/item/IVM_2004_1_a2/
[1] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 487 pp. | MR | Zbl
[2] Lyubushin A. A., Chernousko F. L., “Metod posledovatelnykh priblizhenii dlya rascheta optimalnogo upravleniya”, Izv. AN SSSR. Ser. tekhn. kibernet., 2 (1983), 147–159 | Zbl
[3] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo IGU, Irkutsk, 1994, 342 pp.
[4] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000, 160 pp.
[5] Buldaev A. S., “Nelokalnoe uluchshenie upravlenii v dinamicheskikh sistemakh, kvadratichnykh po sostoyaniyu”, Izv. vuzov. Matematika, 2001, no. 12, 3–9 | MR | Zbl
[6] Antonik V. G., Srochko V. A., “Metod proektsii v lineino-kvadratichnykh zadachakh optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 38:4 (1998), 564–572 | MR | Zbl