A generalized solution of one-dimensional semilinear hyperbolic systems with mixed conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 75-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_12_a7,
     author = {V. A. Terletskii},
     title = {A generalized solution of one-dimensional semilinear hyperbolic systems with mixed conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--83},
     publisher = {mathdoc},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_12_a7/}
}
TY  - JOUR
AU  - V. A. Terletskii
TI  - A generalized solution of one-dimensional semilinear hyperbolic systems with mixed conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 75
EP  - 83
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_12_a7/
LA  - ru
ID  - IVM_2004_12_a7
ER  - 
%0 Journal Article
%A V. A. Terletskii
%T A generalized solution of one-dimensional semilinear hyperbolic systems with mixed conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 75-83
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_12_a7/
%G ru
%F IVM_2004_12_a7
V. A. Terletskii. A generalized solution of one-dimensional semilinear hyperbolic systems with mixed conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 75-83. http://geodesic.mathdoc.fr/item/IVM_2004_12_a7/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978, 687 pp. | MR | Zbl

[2] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979, 392 pp. | MR | Zbl

[3] Egorov A. I., Znamenskaya L. N., “Upravlenie uprugimi kolebaniyami (obzor)”, Optimizatsiya, upravlenie, intellekt, 5, ID STU SO RAN, Irkutsk, 2000, 249–257

[4] Moskalenko A. I., Moskalenko R. A., Khamitov G. P., “Modelirovanie vozrastnoi struktury proizvodstvennykh fondov s tochki zreniya zadach upravleniya ekonomicheskimi sistemami”, Optimizatsiya, upravlenie, intellekt, 5, ID STU SO RAN, Irkutsk, 2000, 418–427

[5] Potapov M. M., “Obobschennoe reshenie smeshannoi zadachi dlya polulineinoi giperbolicheskoi sistemy pervogo poryadka”, Differents. uravneniya, 19:10 (1983), 1826–1828 | MR | Zbl

[6] Morozov S. F., “Nachalno-kraevaya zadacha dlya pochti lineinoi giperbolicheskoi sistemy na ploskosti”, Kraevye zadachi, Perm, 1989, 141–149 | MR

[7] Matveev A. S., Obobschennye resheniya polulineinoi sistemy uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa i zadachi upravleniya, Dep. v VINITI 23.07.90, No 2983-80, 39 pp.

[8] Lankaster P., Teoriya matrits, Nauka, M., 1982, 270 pp. | MR

[9] Levy H., “Über Anfangswertproblem für eine hyperbolische nichtlineare Differentialgleichungen zweiter Ordnung mit zwei unabhängigen Veränderlichen”, Math. Ann., 97 (1927), 179–191

[10] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964, 272 pp. | MR | Zbl

[11] Vasilev O. V., Srochko V. A., Terletskii V. A., Metody optimizatsii i ikh prilozheniya. Ch. 2. Optimalnoe upravlenie, Nauka, Novosibirsk, 1990, 151 pp. | MR | Zbl

[12] Friedrichs K. O., “Symmetric positive linear differential equations”, Comm. Pure Appl. Math., 11:3 (1958), 333–418 | DOI | MR | Zbl

[13] Lax P. D., Phillips R. S., “Local boundary conditions for dissipative symmetric linear differential operators”, Comm. Pure Appl. Math., 13:3 (1960), 427–455 | DOI | MR | Zbl

[14] Phillips R. S., Sarason L., “Singular symmetric first order differential operators”, J. Math. and Mech., 15:2 (1966), 235–271 | MR | Zbl

[15] Vasiliev O. V., Terletsky V. A., Arguchintsev A. V., “Iterative processes in optimization of semilinear hyperbolic system”, 11-th IFAC World Congress, V. 6, Tallinn, 1990, 216–220

[16] Terletskii V. A., “Variatsionnyi printsip maksimuma v upravlyaemykh sistemakh odnomernykh giperbolicheskikh uravnenii”, Izv. vuzov. Matematika, 1999, no. 12, 82–90 | MR

[17] Terletskii V. A., “Obobschennoe reshenie mnogomernykh polulineinykh giperbolicheskikh sistem”, Izv. vuzov. Matematika, 2001, no. 12, 68–76 | MR | Zbl

[18] Sansone Dzh., Obyknovennye differentsialnye uravneniya, t. II, In. lit., M., 1954, 415 pp.

[19] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, In. lit., M., 1958, 474 pp.