Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_12_a1, author = {V. A. Emelichev and K. G. Kuz'min and A. M. Leonovich}, title = {On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma${-MINMAX} and $\Sigma${-MINMIN}}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {17--27}, publisher = {mathdoc}, number = {12}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/} }
TY - JOUR AU - V. A. Emelichev AU - K. G. Kuz'min AU - A. M. Leonovich TI - On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 17 EP - 27 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/ LA - ru ID - IVM_2004_12_a1 ER -
%0 Journal Article %A V. A. Emelichev %A K. G. Kuz'min %A A. M. Leonovich %T On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 17-27 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/ %G ru %F IVM_2004_12_a1
V. A. Emelichev; K. G. Kuz'min; A. M. Leonovich. On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 17-27. http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/