On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 17-27

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_12_a1,
     author = {V. A. Emelichev and K. G. Kuz'min and A. M. Leonovich},
     title = {On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma${-MINMAX} and $\Sigma${-MINMIN}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--27},
     publisher = {mathdoc},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
AU  - A. M. Leonovich
TI  - On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 17
EP  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/
LA  - ru
ID  - IVM_2004_12_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%A A. M. Leonovich
%T On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 17-27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/
%G ru
%F IVM_2004_12_a1
V. A. Emelichev; K. G. Kuz'min; A. M. Leonovich. On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 17-27. http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/