On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 17-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_12_a1,
     author = {V. A. Emelichev and K. G. Kuz'min and A. M. Leonovich},
     title = {On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma${-MINMAX} and $\Sigma${-MINMIN}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--27},
     publisher = {mathdoc},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
AU  - A. M. Leonovich
TI  - On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 17
EP  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/
LA  - ru
ID  - IVM_2004_12_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%A A. M. Leonovich
%T On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 17-27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/
%G ru
%F IVM_2004_12_a1
V. A. Emelichev; K. G. Kuz'min; A. M. Leonovich. On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2004), pp. 17-27. http://geodesic.mathdoc.fr/item/IVM_2004_12_a1/

[1] Kozeratskaya L. N., Lebedeva T. T., Sergienko T. I., “Zadachi tselochislennogo programmirovaniya s vektornym kriteriem: parametricheskii analiz i issledovanie ustoichivosti”, DAN SSSR, 307:3 (1989), 527–529

[2] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Nauk. dumka, Kiev, 1995, 169 pp. | Zbl

[3] Emelichev V. A., Podkopaev D. P., “O kolichestvennoi mere ustoichivosti vektornoi zadachi tselochislennogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 38:11 (1998), 1801–1805 | MR | Zbl

[4] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[5] Emelichev V. A., Kravtsov M. K., Podkopaev D. P., “O kvaziustoichivosti traektornykh zadach vektornoi optimizatsii”, Matem. zametki, 63:1 (1998), 21–27 | MR | Zbl

[6] Emelichev V. A., Stepanishina Yu. V., “Kvaziustoichivost vektornoi nelineinoi traektornoi zadachi s paretovskim printsipom optimalnosti”, Izv. vuzov. Matematika, 2000, no. 12, 27–32 | MR | Zbl

[7] Berdysheva R. A., Emelichev V. A., “Nekotorye vidy ustoichivosti kombinatornoi zadachi leksikograficheskoi optimizatsii”, Izv. vuzov. Matematika, 1998, no. 12, 11–21 | MR | Zbl

[8] Emelichev V. A., Berdysheva R. A., “O radiusakh ustoichivosti, kvaziustoichivosti i stabilnosti vektornoi traektornoi zadachi leksikograficheskoi optimizatsii”, Diskretn. matem., 10:1 (1998), 20–27 | MR | Zbl

[9] Emelichev V. A., Stepanishina Yu. V., “O kvaziustoichivosti vektornoi traektornoi zadachi mazhoritarnoi optimizatsii”, Matem. zametki, 72:1 (2002), 38–47 | MR | Zbl

[10] Emelichev V. A., Leonovich A. M., “A sensitivity measure of the Pareto set in a vector $l_\infty$-extreme combinatorial problem”, Computer Science Journal of Moldova, 9:3 (2001), 291–304 | MR | Zbl

[11] Emelichev V. A., Leonovich A. M., “A quasistability of the vector $l_\infty$-extreme combinatorial problem with Pareto principle of optimality”, Buletinul Acad. de St. a Republicii Moldova. Matematica, 2001, no. 1, 44–50 | MR | Zbl

[12] Emelichev V. A., Kovalenko K. E., “Quasi-stability of a vector trajectorial problem with non-linear partial criteria”, Computer Science Journal of Moldova, 11:2 (2003), 137–149 | MR | Zbl

[13] Emelichev V. A., Pokhilko V. G., “Analiz chuvstvitelnosti effektivnykh reshenii vektornoi zadachi minimizatsii lineinykh form na mnozhestve podstanovok”, Diskretn. matem., 12:3 (2000), 37–48 | Zbl

[14] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii, Ser. 2, 8:1 (2001), 47–69 | MR | Zbl

[15] Girlikh E., Kovalev M. N., Kravtsov M. K., “Stabilnost, ustoichivost i kvaziustoichivost mnogokriterialnoi zadachi na sisteme podmnozhestv”, Kibernetika i sistemnyi analiz, 1999, no. 5, 111–124 | MR

[16] Emelichev V. A., Kravtsov M. K., “O kombinatornykh zadachakh vektornoi optimizatsii”, Diskretn. matem., 7:1 (1995), 3–18 | Zbl

[17] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[18] Dinits A. E., “O reshenii dvukh zadach o naznachenii”, Issledov. po diskretn. optimizatsii, Nauka, M., 1976, 333–348

[19] Smale S., “Global analysis and economics. V. Pareto theory with constraints”, J. Math. Econom., 1:3 (1974), 213–221 | DOI | MR | Zbl

[20] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Probl. kibernetiki, 35 (1979), 169–184, Nauka, M. | MR

[21] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR