Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_11_a4, author = {U. Simon}, title = {On an affine theory of hypersurfaces: gauge-invariant structures}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {53--81}, publisher = {mathdoc}, number = {11}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_11_a4/} }
U. Simon. On an affine theory of hypersurfaces: gauge-invariant structures. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2004), pp. 53-81. http://geodesic.mathdoc.fr/item/IVM_2004_11_a4/
[1] Salkowski E., Affine Differentialgeometrie, Walter de Gruyter, Berlin, 1934 | Zbl
[2] Schirokow P. A., Schirokow A. P., Affine Differentialgeometrie, Teubner Verlag, Leipzig, 1962 | MR | Zbl
[3] Nomizu K., Sasaki T., Affine differential geometry, Cambridge Univ. Press, 1993 | MR
[4] Li A. M., Simon U., Zhao G., Global affine differential geometry of hypersurfaces, De Gruyter, Berlin–New -York, 1993 | MR | Zbl
[5] Simon U., “Affine differential geometry”, Handbook of Differential Geometry, V. I, Elsevier Science, 2000, 905–961 | MR | Zbl
[6] Blaschke W., Gesammelte Werke. Band 4: Affine Differentialgeometrie, Differentialgeometrie der Kreis- und Kugelgruppen, ed. W. Burau et al., Thales Verlag Essen, 1985 | Zbl
[7] Blaschke W., Vorlesungen über Differentialgeometrie. II. Affine Differentialgeometrie, Springer, Berlin, 1923 | Zbl
[8] Dillen F., Nomizu K., Vrancken L., “Conjugate connections and Radon's theorem in affine differential geometry”, Monatsh. Math., 109 (1990), 221–235 | DOI | MR | Zbl
[9] Flanders H., “Local theory of affine hypersurfaces”, J. Analyse Math., 15 (1965), 353–387 | DOI | MR | Zbl
[10] Simon U., Schwenk- Schellschmidt A., Viesel H., Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, Science University of Tokyo, 1991, ISBN 3-7983-1529-9 | MR
[11] Ivanov St., “On dual-projectively flat affine connections”, J. Geom., 53 (1995), 89–99 | DOI | MR | Zbl
[12] Opozda B., “Some extensions of Radon's theorem”, Lect. Notes Math., 1481, Springer, 1991, 185–191 | MR
[13] Wiehe M., Deformations in affine hypersurface theory, Dissertation FB Mathematik TU Berlin, Shaker, Aachen, 1999. | MR
[14] Binder Th., Wiehe M., Invariance groups of relative normals, Preprint TU Berlin, Inst. Math., 2004. | MR
[15] Simon U., “Connections and conformal structure in affine differential geometry”, Differential geometry and its applications, Proc. Conf. Diff. Geometry (1986, Brno, Czechoslovakia), 1987, 315–327 | MR | Zbl
[16] Bokan N., Gilkey P., Simon U., “Applications of spectral geometry to affine and projective geometry”, Beiträge Algebra und Geometrie, 35 (1994), 283–314 | MR | Zbl
[17] Bokan N., Gilkey P., Simon U., “Geometry of differential operators on Weyl manifolds”, Phil. Trans. Proc. Royal Soc. London, Serie A, 453 (1997), 2527–2536 | MR | Zbl
[18] Bokan N., Gilkey P., Simon U., “Spectral invariants of affine hypersurfaces”, Publications de l' Institut Mathématique Nouvelle Série, 64 (1998), 133–145 | MR | Zbl
[19] Blazic N., Gilkey P., Nikcevic S., Simon U., The spectral geometry of the Weyl conformal curvature tensor, , 2003 http://arXiv.org/abs/math.DG/0310226
[20] Eisenhart L. P., Non-Riemannian geometry, AMS Colloquium Publications, 1927
[21] Nomizu K., Simon U., “Notes on conjugate connections”, Geometry and Topology of Submanifolds IV (World Scientific Singapore), eds. F. Dillen et al., 1992, 152–172 | MR
[22] Tabachnikov S, “Remarks on the geometry of exact transverse line field”, Differential topology, Infinite-dimensional Lie algebras and applications, AMS Transl. Ser. 2, 194(44), eds. A. Astashkevich et al., Providence, RI, 1999, 247–260 | MR | Zbl
[23] Laugwitz D., Differentialgeometrie in Vektorräumen unter besonderer, Berücksichtigung der unendlichdimensionalen Räume, Bibliographisches Institut, Mannheim, 1965 | Zbl
[24] Simon U., “Zur Relativgeometrie: Symmetrische Zusammenhänge auf Hyperflächen”, Math. Z., 101 (1968), 26–46 | MR
[25] Vrancken L., “The Magid–Ryan conjecture for equiaffine hyperspheres with constant sectional curvature”, J. Differential Geometry, 54 (2000), 99–138 | MR | Zbl
[26] Calabi E., “Hypersurfaces with maximal affinely invariant area”, Amer. J. Math., 104 (1982), 91–126 | DOI | MR | Zbl
[27] Verstraelen L., Vrancken L., “Affine variation formulas and affine minimal surface”, Mich. Math. J., 36 (1989), 77–93 | DOI | MR | Zbl
[28] Wang C. P., “Centroaffine minimal hypersurfaces in $R^{n+1}$”, Geometriae Dedicata, 51 (1994), 63–74 | DOI | MR | Zbl
[29] Li A. M., Li H., Simon U., “Centroaffine Bernstein problems”, Differential Geom. and Appl., 20 (2004), 331–356 | DOI | MR | Zbl
[30] Liu H. L., “Classification of surfaces in $R^3$ which are centroaffine-minimal and equiaffine-minimal”, Bull. Belg. Math. Soc. Simon Stevin, 3:5 (1996), 577–583 | MR | Zbl
[31] Liu H. L., Wang C. P., “The centroaffine Tchebychev operator”, Results Mathematics, 27 (1995), 77–92 | MR | Zbl
[32] Liu H. L., Wang C. P., “Relative Tchebychev surfaces in $R^3$”, Kyushu J. Math, 50 (1996), 533–540 | DOI | MR | Zbl
[33] Liu H. L., Simon U., Wang C. P., “Conformal structure in affine geometry: complete Tchebychev hypersurfaces”, Abh. Math. Semin. Univ. Hamb, 66 (1996), 249–262 | DOI | MR | Zbl
[34] Leichtweiss K., “On the infinitesimal affine rigidity of ellipsoids in the $n$-space”, Arch. Math., 72 (1999), 315–320 | DOI | MR | Zbl
[35] Scharlach Ch., Affin-konforme Geometrie regulärer Hyperflächen, Diploma Thesis FB Mathematik TU Berlin, 1989
[36] Folland G. B., “Weyl manifolds”, J. Differerential Geometry, 4 (1970), 145–153 | MR | Zbl
[37] Simon U., “Codazzi transformations”, Geometry and Topology of Submanifolds VII, eds. F. Dillen et al., World Scientific Singapore, 1995, 248–252 | MR
[38] Simon U., “Transformation techniques for partial differential equations on projectively flat manifolds”, Results Mathematics, 27 (1995), 160–187 | MR | Zbl
[39] Matsuzoe H., “On realization of conformally-projectively flat statistical manifolds and the divergences”, Hokkaido Math. J., 27 (1998), 409–421 | MR | Zbl
[40] Steglich Ch, “Invariants of conformal and projective structures”, Results Mathematics, 27 (1995), 188–190 | MR | Zbl
[41] Kurose T., “Conformal-projective geometry of statistical manifolds”, Interdiscip. Inform. Sci., 8 (2002), 89–100 | DOI | MR | Zbl
[42] Peikert M, “Examples of Weyl geometries in affine differential geometry”, Geometry and Topology of Submanifolds IX, eds. F. Defever et al., World Scientific Singapore, 1999, 208–220 | MR
[43] Nomizu K., Pinkall U., “Cubic form theorem for affine immersions”, Results Mathematics, 13 (1988), 338–362 | MR | Zbl
[44] Li A. M., Liu H. L., Schwenk -Schellschmidt A., Simon U., Wang C. P., “Cubic form methods and relative Tchebychev hypersurfaces”, Geometriae Dedicata, 66 (1997), 203–221 | DOI | MR | Zbl
[45] Li A. M., Simon U., Zhao G., “Hypersurfaces with prescribed affine Gauss–Kronecker curvature”, Geometriae Dedicata, 81 (2000), 141–166 | DOI | MR | Zbl
[46] O'Neill B., Semi-Riemannian geometry, Academic Press, 1983 | MR
[47] Schneider R., “Zur affinen Differentialgeometrie im Grossen. I”, Math. Z., 101 (1967), 375–406 | DOI | MR | Zbl
[48] Gardner R. B., Kriele M., Simon U., “Generalized spherical functions on projectively flat manifolds”, Results in Mathematics, 27 (1995), 41–50 | MR | Zbl
[49] Leder J., Generation of Codazzi tensors by functions, Dissertation FB Mathematik TU Berlin, 1999
[50] Leder J., “Cubic forms generated by functions on projectively flat spaces”, Geometry and Topology of Submanifolds IX, eds. F. Defever et al., World Scientific Singapore, 1999, 160–173 | MR
[51] Leder J., Schwenk-Schellschmidt A., Simon U., Wiehe M., “Generating higher order Codazzi tensors by functions”, Geometry and Topology of Submanifolds IX, eds. F. Defever et al., World Scientific Singapore, 1999, 174–191 | MR
[52] Sasaki T., “On a projectively minimal hypersurface in the unimodular affine space”, Geometriae Dedicata, 23 (1987), 237–251 | DOI | MR | Zbl
[53] Trudinger N., Wang X. J., “The Bernstein problem for affine maximal hypersurfaces”, Invent. Math., 140, 2000, 399–422 | MR | Zbl
[54] Li A. M., Jia F., “The Calabi conjecture on affine maximal surfaces”, Results Mathematics, 40 (2001), 265–272 | MR | Zbl
[55] Kozlowski M., Simon U., “Hyperflächen mit äquiaffiner Einsteinmetrik Mathematica”, Festschrift E. Mohr zum 75. Geburtstag, TU Berlin, 1985, 179–190 | MR
[56] Hu Z., Zhao G., Some remarks on the Kozlowski–Simon conjecture for affine ovaloids, Preprint Zhengzhou Univ, 2004 | MR
[57] Pinkall U., Schwenk-Schellschmidt A., Simon U., “Geometric methods for solving Codazzi and Monge–Ampère equations”, Math. Ann., 298 (1994), 89–100 | DOI | MR | Zbl
[58] Lusala T., Non-degenerate hypersurface immersions in spheres, Dissertation TU Berlin, Shaker Verlag, Aachen, 2001 | Zbl
[59] Lusala T., “Cubic form geometry for surfaces in $S^3(1)$”, Contributions Algebra Geometry, 43 (2002), 275–296 | MR | Zbl
[60] Dillen F., Verbouwe G., Vrancken L., “Cubic form geometry for immersions in centro-affine and graph hypersurfaces”, Results Mathematics, 43 (2003), 88–95 | MR | Zbl
[61] Calabi E., “Géométrie différentielle affine des hypersurfaces”, Lect. Notes Math, 901, Springer, 1981, 189–204 | MR
[62] Simon U., Wang C. P., “Local theory of affine 2-spheres”, Proceedings of Symposia in Pure Mathematics, 54 (1993), 585–598 | MR | Zbl